\$ SUPER

Contents lists available at ScienceDirect

Atherosclerosis

journal homepage: www.elsevier.com/locate/atherosclerosis

Editorial

Uncovering familial hypercholesterolaemia phenotype in the community: How primary care can transform early detection and management

Familial hypercholesterolaemia (FH) is an autosomal dominant genetic condition affecting approximately 1 in 250 individuals who inherit the common heterozygous form [1]. Despite its prevalence and the significant associated risk of premature atherosclerotic cardiovascular disease (CVD), over 80 % of individuals with FH remain undiagnosed [2]. This represents a missed opportunity, since associated increased risk of premature CVD is significantly reduced with timely and appropriate use of lipid-lowering therapy. The recent paper published by Gijon-Conde et al. in this issue of Atherosclerosis, underscores the role of primary care as an ideal place to systematically identify individuals with FH in the electronic health records (EHR) and initiate appropriate and timely management interventions [3].

1. Identification of FH in the general population

In primary care identification of possible FH clinical phenotype generally begins with identifying a very high total or low-density lipoprotein (LDL) cholesterol levels. As demonstrated by Gijon-Conde et al., using the 90th centile for cholesterol levels is a rapid and low-cost approach to search EHRs to identify individuals with suspected FH. This approach could potentially identify a significant prevalence of FH clinical phenotype, reaching 1.03 % prevalence in the study by Gijon-Conde et al. The exclusion of individuals with raised triglyceride levels, as a refinement to the initial screening, is appropriate to exclude other lipid disorders such as familial combined hyperlipidaemia.

While using the 90th centile for cholesterol levels, with appropriate refinements, offers a practical starting point for identifying FH clinical phenotypes, more elaborate approaches for searching primary care EHRs are also available. As highlighted by the authors, tools such as the Familial Hypercholesterolaemia Case Ascertainment Tool (FAMCAT) can improve detection rates for FH clinical phenotypes when applied to primary care EHRs [4]. However, the successful implementation of such search strategies, relies on the compatibility of the healthcare IT system, data quality, and comprehensive data recording of relevant predictor variables in the EHRs. It is also important to account for secondary causes of hypercholesterolaemia when screening for FH. The Gijon-Conde study addressed this by excluding individuals with raised thyroid-stimulating hormone (TSH) levels, indicative of hypothyroidism, a known secondary cause of hypercholesterolaemia. Other secondary causes, such as liver disorders or nephrotic syndrome, may also be identifiable through laboratory results or coded diagnosis in the EHR. One key challenge is accurately linking the timing of these abnormal laboratory test results with elevated cholesterol profiles. For instance, an individual with well-controlled hypothyroidism (normal TSH) may still have underlying FH, even if the TSH was raised in the past. In addition, crucial predictors of FH including a family history of premature coronary heart disease or a family history of high cholesterol, but these are often inconsistently recorded in EHRs. Ultimately, the quality, accuracy, and completeness of data recording in EHRs are critical to the success of any strategy aimed at identifying FH in the general population using EHRs.

More elaborate search algorithms, such as FAMCAT in the UK and FIND FH® in USA, have been developed using comprehensive EHR data to improve the identification of FH [4–6]. These tools aim to improve key performance metrics including detection rates, sensitivity, specificity, positive and negative predictive values, compared to traditional case-finding approaches used in lipid specialist care, like the Simon Broome and Dutch Lipid Clinical Network criteria [7]. Given the low prevalence of FH in the general population, it is important for population-based screening tools to achieve high sensitivity and positive predictive value to reliably identify true cases. However, this must be carefully balanced with an acceptable specificity and negative predictive value to minimise false positives. Excessive false positives can lead to unnecessary follow-up testing, increased healthcare cost, patient anxiety, and additional burden on already overstretched primary care systems.

Ideally, FH clinical phenotype should be genetically confirmed. While resource limitations may preclude genetic testing in low- and middle-income country settings, the identification of FH clinical phenotype alone at a population level will improve health outcomes. As the cost of genetic testing decreases, there would be the opportunity to expand genetic testing in the community and subsequent cascade screening. Cascade screening of relatives of identified index cases, is crucial to identify other family members at an early age before the development of significant atherosclerosis and this has been shown to be highly cost-effective for FH [8,9]. The International Atherosclerosis Society (IAS) and other guidelines support cascade screening as an effective way to find FH beyond index patients and prevent atherosclerotic CVD in families at risk of FH [10]. Fig. 1 displays a potential pathway from EHR search.

As Gijon-Conde et al. note, there is currently a lack of evidence from intervention studies evaluating different EHR-based search strategies for improving the identification of FH in the general population [11]. Despite the lack of robust evidence from randomised controlled trials, national guidelines still recommend systematic approaches. This is supported by findings from population-based EHR studies across multiple clinical sites, such as the study by Gijon et al. and others, which have successfully identified individuals with clinically or genetically

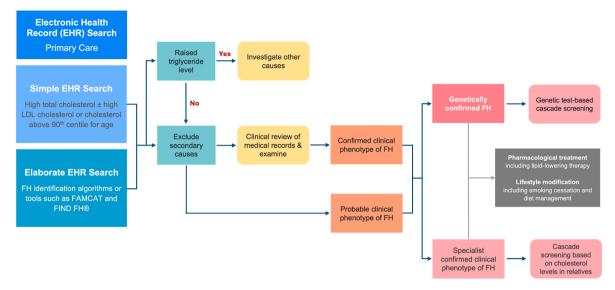


Fig. 1. Potential pathway from identification of familial hypercholesterolaemia using an electronic health record search strategy.

confirmed FH [3,7]. The recently published IAS guidance, for instance, recommends digital EHR searches and laboratory alerts to improve FH case detection [10]. These recommendations reflect a broader consensus that, while the most effective EHR-based strategies are still evolving, active case-finding in primary care should be pursued.

2. Management of familial hypercholesterolaemia

The identification of FH clinical phenotype is only the initial step in a primary care physician's involvement with the management of individuals with FH. The primary goal of FH management is to achieve substantial reduction in LDL cholesterol levels to guideline-recommended targets. The European Atherosclerosis Society (EAS) and European Society of Cardiology (ESC) Guidelines, alongside EAS Consensus Statements, provide stringent recommendations for LDL cholesterol reduction. For very high-risk individuals, which typically includes FH patients, the 2019 ESC/EAS Guidelines recommend an LDL cholesterol target of less than 1.4 mmol/L (<55 mg/dL) or at least a 50 % reduction from baseline [12,13].

Despite these clear guidelines, individuals with FH clinical phenotype or genetically confirmed FH diagnosis are often inadequately treated. The Gijon-Conde study found that a low proportion of patients received higher potency lipid-lowering therapy to reduce cholesterol, and more concerningly, none achieved the recommended LDL cholesterol targets. This finding is consistent with other studies involving both individuals with FH and the general population, where nearly half of the study population did not achieve the guideline-recommended cholesterol levels [14,15].

In addition to pharmacological interventions, addressing other modifiable risk factors is essential for individuals with FH, who are at high risk of CVD. Comprehensive lifestyle modification such as smoking cessation, dietary improvements, and physical activities plays a vital role in reducing CVD risk. For instance, individuals with FH who smoke experience significantly worse cardiovascular outcomes, highlighting the importance of comprehensive risk reduction strategies and other healthy lifestyle choices [16].

3. Equitable familial hypercholesterolaemia service provision

Any successful strategy for implementing FH care should encompass both identification and management of FH, while crucially ensuring equitable access across the entire patient pathway [10]. Recent evidence highlights disparities in the management of CVD risk between men and women, both in individuals with FH and in the general population – with poorer management in women compared to men [17,18]. In the UK Simon Broome register, Iyen et al. (2020) found men were more often prescribed high-potency statins than women, even after accounting for risk [18]. This disparity was reconfirmed in the Gijon-Conde study, which found a lower proportion of women were treated with higher potency lipid-lowering therapy. These sex-based differences are not fully explained by contraindications or risk profiles, suggesting the influence of potential bias or gaps in clinical knowledge. Such inequity underscores a pressing need to identify and address systemic biases that might exist in healthcare provision that may contribute to these discrepancies, ensuring that women with FH receive care that is as intensive and appropriately effective as that provided to men, to mitigate their increased risk of CVD.

Equity concerns extend beyond sex. Socio-demographic, ethnic, and racial disparities in the diagnosis and treatment of FH have been documented [19]. Improved care and outcomes for all patients with FH, irrespective of socio-demographic factors and background, could be achieved through better education and training of primary care physicians and other health care professionals involved in FH care [20]. This training should include increased awareness among healthcare providers regarding FH diagnostic criteria, optimal management strategies, and the importance of addressing health inequities. Introducing such educational programmes to health professionals working in diverse communities would ensure more equitable and effective care is delivered across the entire population.

In conclusion, the FH clinical phenotype can be identified in primary care using either a simple search strategy, such as the 90th centile for cholesterol levels with appropriate refinements, as demonstrated in the Gijon-Conde et al. study, or more elaborate algorithms and strategies. The fundamental prerequisite for the successful implementation of any such strategies is the robustness, completeness, and accuracy of the health and care information recorded in the EHRs. However, identification is only the beginning of the patient journey. Individuals identified with the FH clinical phenotype must receive appropriate and equitable management to reduce their risk of premature CVD and death. This goal is achievable even in settings where genetic testing for FH is not readily available, provided there is a concerted effort to ensure early diagnosis and effective treatment aligned with guideline-recommended targets for cholesterol levels.

Declaration of competing interest

The authors declare no conflict of interest.

References

- Defesche JC, Gidding SS, Harada-Shiba M, Hegele RA, Santos RD, Wierzbicki AS. Familial hypercholesterolaemia. Nat Rev Dis Primers 2017;3:17093. https://doi. org/10.1038/nrdp.2017.93.
- [2] Representatives of the Global Familial Hypercholesterolemia Community, Wilemon KA, Patel J, Aguilar-Salinas C, Ahmed CD, Alkhnifsawi M, Almahmeed W, Alonso R, Al-Rasadi K, Badimon L, Bernal LM, Bogsrud MP, Braun LT, Brunham L, Catapano AL, Cillíková K, Corral P, Cuevas R, Defesche JC, Descamps OS, de Ferranti S, Eiselé J-L, Elikir G, Folco E, Freiberger T, Fuggetta F, Gaspar IM, Gesztes ÁG, Grošelj U, Hamilton-Craig I, Hanauer-Mader G, Harada-Shiba M, Hastings G, Hovingh GK, Izar MC, Jamison A, Karlsson GN, Kayikçioglu M, Koob S, Koseki M, Lane S, Lima-Martinez MM, López G, Martinez TL, Marais D, Marion L, Mata P, Maurina I, Maxwell D, Mehta R, Mensah GA, Miserez AR, Neely D, Nicholls SJ, Nohara A, Nordestgaard BG, Ose L, Pallidis A, Pang J, Payne J Peterson AL, Popescu MP, Puri R, Ray KK, Reda A, Sampietro T, Santos RD, Schalkers I, Schreier L, Shapiro MD, Sijbrands E, Soffer D, Stefanutti C, Stoll M, Sy RG, Tamayo ML, Tilney MK, Tokgözoglu L, Tomlinson B, Vallejo-Vaz AJ, Vazquez-Cárdenas A, de Luca PV, Wald DS, Watts GF, Wenger NK, Wolf M, Wood D, Zegerius A, Gaziano TA, Gidding SS. Reducing the clinical and public health burden of familial hypercholesterolemia: a global call to action. JAMA Cardiol 2020;5:217-29. https://doi.org/10.1001/jamacardio.2019.5173.
- [3] Gijón-Conde T, Banegas JR, Sánchez CF, Alonso R, Mata P. Clinical profile of familial hypercholesterolemia phenotype in adults attended in primary care in a large healthcare area. Atherosclerosis 2025 Jun 4;0:120400. https://doi.org/10.1016/j.atherosclerosis.2025.120400.
- [4] Weng S, Kai J, Akyea R, Qureshi N. Detection of familial hypercholesterolaemia: external validation of the FAMCAT clinical case-finding algorithm to identify patients in primary care. Lancet Public Health 2019;4:e256–64. https://doi.org/ 10.1016/\$2468-2667(19)30061-1.
- [5] Weng SF, Kai J, Andrew Neil H, Humphries SE, Qureshi N. Improving identification of familial hypercholesterolaemia in primary care: derivation and validation of the familial hypercholesterolaemia case ascertainment tool (FAMCAT). Atherosclerosis 2015;238:336–43. https://doi.org/10.1016/i.atherosclerosis.2014.12.034.
- [6] Banda JM, Sarraju A, Abbasi F, Parizo J, Pariani M, Ison H, Briskin E, Wand H, Dubois S, Jung K, Myers SA, Rader DJ, Leader JB, Murray MF, Myers KD, Wilemon K, Shah NH, Knowles JW. Finding missed cases of familial hypercholesterolemia in health systems using machine learning. npj Digit Med 2019;2:23. https://doi.org/10.1038/s41746-019-0101-5.
- [7] Qureshi N, Akyea RK, Dutton B, Leonardi-Bee J, Humphries SE, Weng S, Kai J. Comparing the performance of the novel FAMCAT algorithms and established case-finding criteria for familial hypercholesterolaemia in primary care. Open Heart 2021;8:e001752. https://doi.org/10.1136/openhrt-2021-001752.
- [8] Nherera L, Marks D, Minhas R, Thorogood M, Humphries SE. Probabilistic cost-effectiveness analysis of cascade screening for familial hypercholesterolaemia using alternative diagnostic and identification strategies. Heart 2011;97:1175–81. https://doi.org/10.1136/hrt.2010.213975.
- [9] Ademi Z, Watts GF, Pang J, Sijbrands EJG, van Bockxmeer FM, O'Leary P, Geelhoed E, Liew D. Cascade screening based on genetic testing is cost-effective: evidence for the implementation of models of care for familial hypercholesterolemia. J Clin Lipidol 2014;8:390–400. https://doi.org/10.1016/j.jacl.2014.05.008.
 [10] Watts GF, Gidding SS, Hegele RA, Raal FJ, Sturm AC, Jones LK, Sarkies MN, Al-
- [10] Watts GF, Gidding SS, Hegele RA, Raal FJ, Sturm AC, Jones LK, Sarkies MN, Al-Rasadi K, Blom DJ, Daccord M, de Ferranti SD, Folco E, Libby P, Mata P, Nawawi HM, Ramaswami U, Ray KK, Stefanutti C, Yamashita S, Pang J, Thompson GR, Santos RD. International Atherosclerosis Society guidance for implementing best practice in the care of familial hypercholesterolaemia. Nat Rev Cardiol 2023;20:845–69. https://doi.org/10.1038/s41569-023-00892-0.
- [11] N. Qureshi, M.L.R.D. Silva, H. Abdul-Hamid, S.F. Weng, J. Kai, J. Leonardi-Bee, Strategies for screening for familial hypercholesterolaemia in primary care and other community settings - Qureshi, N - 2021 | Cochrane Library, (n.d.). https:// www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012985.pub2/full (accessed June 16, 2025).

- [12] Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, Chapman MJ, De Backer GG, Delgado V, Ference BA, Graham IM, Halliday A, Landmesser U, Mihaylova B, Pedersen TR, Riccardi G, Richter DJ, Sabatine MS, Taskinen M-R, Tokgozoglu L, Wiklund O, ESC Scientific Document Group. ESC,/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovaelurisk: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J 2019; 41:111–88. https://doi.org/10.1093/eurheartj/ehz455. 2020.
- [13] Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, Wiklund O, Hegele RA, Raal FJ, Defesche JC, Wiegman A, Santos RD, Watts GF, Parhofer KG, Hovingh GK, Kovanen PT, Boileau C, Averna M, Borén J, Bruckert E, Catapano AL, Kuivenhoven JA, Pajukanta P, Ray K, Stalenhoef AFH, Stroes E, Taskinen M-R, Tybjærg-Hansen A. European Atherosclerosis Society Consensus Panel, Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J 2013;34:3478–3490a. https://doi.org/10.1093/eurheartj/eht273.
- [14] Iyen B, Akyea RK, Weng S, Kai J, Qureshi N. Statin treatment and LDL-cholesterol treatment goal attainment among individuals with familial hypercholesterolaemia in primary care. Open Heart 2021;8:e001817. https://doi.org/10.1136/openhrt-2021-001817.
- [15] Akyea RK, Kai J, Qureshi N, Iyen B, Weng SF. Sub-optimal cholesterol response to initiation of statins and future risk of cardiovascular disease. Heart 2019;105: 975–81. https://doi.org/10.1136/heartjnl-2018-314253.
- [16] Tada H, Kojima N, Yamagami K, Nomura A, Nohara A, Usui S, Sakata K, Hayashi K, Fujino N, Takamura M, Kawashiri M. Impact of healthy lifestyle in patients with familial hypercholesterolemia. JACC (J Am Coll Cardiol): Asia 2023;3:152–60. https://doi.org/10.1016/j.jacasi.2022.10.012.
- [17] de Isla LP, Vallejo-Vaz AJ, Watts GF, Muñiz-Grijalvo O, Alonso R, Diaz-Diaz JL, Arroyo-Olivares R, Aguado R, Argueso R, Mauri M, Romero MJ, Álvarez-Baños P, Mañas D, Cepeda JM, Gonzalez-Bustos P, Casañas M, Michan A, Muñoz-Torrero JFS, Faedo C, Barba MA, Dieguez M, de Andrés R, Hernandez AM, Gonzalez-Estrada A, Padró T, Fuentes F, Badimon L, Mata P, SAFEHEART Investigators. Long-term sex differences in atherosclerotic cardiovascular disease in individuals with heterozygous familial hypercholesterolaemia in Spain: a study using data from SAFEHEART, a nationwide, multicentre, prospective cohort study. Lancet Diabetes Endocrinol 2024;12:643–52. https://doi.org/10.1016/S2213-8587(24) 00192-X.
- [18] Iyen B, Qureshi N, Weng S, Roderick P, Kai J, Capps N, Durrington PN, McDowell IF, Soran H, Neil A, Humphries SE. Sex differences in cardiovascular morbidity associated with familial hypercholesterolaemia: a retrospective cohort study of the UK Simon Broome register linked to national hospital records. Atherosclerosis 2020;315:131–7. https://doi.org/10.1016/j. atherosclerosis.2020.10.895.
- [19] Amrock SM, Duell PB, Knickelbine T, Martin SS, O'Brien EC, Watson KE, Mitri J, Kindt I, Shrader P, Baum SJ, Hemphill LC, Ahmed CD, Andersen RL, Kullo IJ, McCann D, Larry JA, Murray MF, Fishberg R, Guyton JR, Wilemon K, Roe MT, Rader DJ, Ballantyne CM, Underberg JA, Thompson P, Duffy D, Linton MF, Shapiro MD, Moriarty PM, Knowles JW, Ahmad ZS. Health disparities among adult patients with a phenotypic diagnosis of familial hypercholesterolemia in the CASCADE-FHTM patient registry. Atherosclerosis 2017;267:19–26. https://doi.org/10.1016/j.atherosclerosis.2017.10.006.
- [20] Weng S, Kai J, Tranter J, Leonardi-Bee J, Qureshi N. Improving identification and management of familial hypercholesterolaemia in primary care: pre- and postintervention study. Atherosclerosis 2018;274:54–60. https://doi.org/10.1016/j. atherosclerosis.2018.04.037.

Ralph K. Akyea, Nadeem Qureshi * De PRISM Research Group, Centre for Academic Primary Care, School of Medicine, University of Nottingham, UK

* Corresponding author. PRISM Research Group, Applied Health Research Building (42), University of Nottingham, Nottingham, UK. E-mail address: nadeem.qureshi@nottingham.ac.uk (N. Qureshi).