Interpretation of the evidence for the efficacy and safety of statin therapy

Summary
This Review is intended to help clinicians, patients, and the public make informed decisions about statin therapy for the prevention of heart attacks and strokes. It explains how the evidence that is available from randomised controlled trials yields reliable information about both the efficacy and safety of statin therapy. In addition, it discusses how claims that statins commonly cause adverse effects reflect a failure to recognise the limitations of other sources of evidence about the effects of treatment. Large-scale evidence from randomised trials shows that statin therapy reduces the risk of major vascular events (ie, coronary deaths or myocardial infarctions, strokes, and coronary revascularisation procedures) by about one-quarter for each mmol/L reduction in LDL cholesterol during each year (after the first) that it continues to be taken. The absolute benefits of statin therapy depend on an individual’s absolute risk of occlusive vascular events and the absolute reduction in LDL cholesterol that is achieved. For example, lowering LDL cholesterol by 2 mmol/L (77 mg/dl) with an effective low-cost statin regimen (eg, atorvastatin 40 mg daily, costing about £2 per month) for 5 years in 10000 patients would typically prevent major vascular events from occurring in about 1000 patients (ie, 10% absolute benefit) with pre-existing occlusive vascular disease (secondary prevention) and in 500 patients (ie, 5% absolute benefit) who are at increased risk but have not yet had a vascular event (primary prevention). Statin therapy has been shown to reduce vascular disease risk during each year it continues to be taken, so larger absolute benefits would accrue with more prolonged therapy, and these benefits persist long term. The only serious adverse events that have been shown to be caused by long-term statin therapy—ie, adverse effects of the statin—are myopathy (defined as muscle pain or weakness combined with large increases in blood concentrations of creatine kinase), new-onset diabetes mellitus, and, probably, haemorrhagic stroke. Typically, treatment of 10000 patients for 5 years with an effective regimen (eg, atorvastatin 40 mg daily) would cause about 5 cases of myopathy (one of which might progress, if the statin therapy is not stopped, to the more severe condition of rhabdomyolysis), 50–100 new cases of diabetes, and 5–10 haemorrhagic strokes. However, any adverse impact of these side-effects on major vascular events has already been taken into account in the estimates of the absolute benefits. Statin therapy may cause symptomatic adverse events (eg, muscle pain or weakness) in up to about 50–100 patients (ie, 0·5–1·0% absolute harm) per 10 000 treated for 5 years. However, placebo-controlled randomised trials have shown definitively that almost all of the symptomatic adverse events that are attributed to statin therapy in routine practice are not actually caused by it (ie, they represent misattribution). The large-scale evidence available from randomised trials also indicates that it is unlikely that large absolute excesses in other serious adverse events still await discovery. Consequently, any further findings that emerge about the effects of statin therapy would not be expected to alter materially the balance of benefits and harms. It is, therefore, of concern that exaggerated claims about side-effect rates with statin therapy may be responsible for its under-use among individuals at increased risk of cardiovascular events. For, whereas the rare cases of myopathy and any muscle-related symptoms that are attributed to statin therapy generally resolve rapidly when treatment is stopped, the heart attacks or strokes that may occur if statin therapy is stopped unnecessarily can be devastating.

Introduction
Used appropriately, modern medical therapies have the potential to prevent a large proportion of the burden of cardiovascular disease. However, their appropriate use relies on the availability of robust data on safety and efficacy, as well as on a sound understanding of the interpretation and application of such evidence. Randomised controlled trials of adequate size are needed to be confident that any moderate benefits and any moderate harms of a treatment have been assessed sufficiently reliably. In certain circumstances, available evidence from randomised trials about the effects of a treatment may be limited (perhaps because it is deemed not possible or too difficult to do adequate trials). However, the particular context that this Review addresses is the appropriate interpretation of evidence about the safety and efficacy of a treatment when randomised trials of it have been conducted in large numbers of many different types of patient (as is the case for statin therapy), as well as the additional value of information from observational studies based on cohorts, health-care databases, or other sources. Not only have the limitations of observational studies often been underestimated when attributing adverse effects to treatment (such as misclassifying claims that statins cause side-effects in one-fifth of patients), but also the strengths of randomised trials with masked treatment allocation and systematic ascertainment of many

www.thelancet.com Published online September 8, 2016 http://dx.doi.org/10.1016/S0140-6736(16)31357-5
Robustness for detecting real treatment effects

It has been suggested that ascertainment of adverse events in randomised trials may not be sufficiently specific or sensitive to detect adverse effects of treatment reliably.11,12,22–24 However, comparisons within randomised trials with unbiased ascertainment of outcomes between the treatment groups are robust against both over-ascertainment and under-ascertainment.21 For example, if the study treatment produced a 20% proportional decrease (or increase) in the rate of an outcome that occurred in 10% of control patients, then (as shown in table 1) the ability to detect such an effect in a randomised trial of 20 000 patients would not be much altered by the random addition of 10–20% of reported events that were not actually the outcome of interest (ie, false positives). Likewise, similar amounts of under-ascertainment (ie, false negatives), would not materially affect the ability to detect such effects in a trial. Moreover, these false positives would have little or no impact on estimates of the absolute effects, and the false negatives would have limited impact. The robustness of these within-trial randomised comparisons applies not only to the detection of beneficial effects, but also to the detection of harms that a treatment might cause (such as any muscle-related symptoms with statin therapy).

It has been suggested that, when data for some types of health outcome are not available from all of the relevant randomised trials of a treatment, this will bias the assessment of its effects.22,23,27 However, although some of these trials may have recorded all types of health outcome reported by the participating patients,
others may have only recorded those outcomes that were considered serious (typically defined as resulting in admission to hospital or death), perhaps because previous trials had ruled out material differences in less serious outcomes. If information on a particular outcome is not available from a randomised trial because it was not recorded that would not bias assessment of the effects of the treatment based on trials that did record the outcome. Also, if randomised trials have already reported results based on large numbers of occurrences of a particular outcome (as with muscle-related outcomes in statin trials; appendix) then the inclusion of any unpublished data from other trials that did record such outcomes is not likely to materially alter the assessment of the effect of the treatment on that outcome.

Intention-to-treat analyses based on comparisons between all randomised patients, irrespective of whether they were adherent to their assigned study treatment (ie, stopped taking the active drug or, if assigned to the control group, started taking it), will tend to underestimate the effects produced by actually taking the treatment. However, rather than using potentially biased on-treatment comparisons among only those patients who took their assigned study treatment, more appropriate allowance can be made by applying an approximate estimate of the level of adherence to estimates of the treatment effects provided by the intention-to-treat comparisons. \(^{38}\) For example, if the average adherence to treatment assignment is two-thirds (or increase).

Specificity versus sensitivity of composite outcomes

When there is clear evidence that a treatment produces effects on the incidence of different types of outcome that are in the same direction and of similar magnitude (eg, the reductions in coronary events, strokes, and revascularisations produced by statin therapy\(^{39–40}\)), combination of these outcomes in a composite outcome (eg, major vascular events in the statin trials) may well provide more robust assessments of the effects of the treatment because they involve larger numbers of events than for any of the constituent outcomes. That does not necessarily mean that—when deciding whether the absolute benefits of the treatment outweigh the harms for any particular type of patient (eg, offering statin therapy to individuals at lower vs higher risk of cardiovascular events)—equal weight should be given to the different components of such composite outcomes. Instead, such analyses of composite outcomes may allow more reliable evidence to emerge about the effects of the treatment in different circumstances (eg, the similar proportional reductions in major vascular events that have been found with statin therapy among many different types of patient;\(^{39–40}\) figure I).

However, when a treatment has effects on different outcomes that differ in direction, then their combination in a composite outcome will reduce the ability to detect these outcome-specific effects and limit generalisability of the analyses.\(^{39–40}\) For example, if a treatment reduces the incidence of ischaemic strokes but increases the incidence of haemorrhagic strokes (as appears to be the case for statin therapy\(^{39–40}\)) then the adverse effect on haemorrhagic strokes may be missed by an assessment based on the composite of all stroke types since ischaemic strokes occur more commonly in most circumstances. By contrast, the assessment of the effects of the treatment on ischaemic and haemorrhagic strokes considered separately would not only be more sensitive to any benefits and harms, but it would also yield findings that are more readily generalised to different settings (as with the use of aspirin in primary and secondary prevention\(^{40}\)).

Likewise, if treatment produced similar proportional reductions in vascular mortality and increases in non-vascular mortality, then the effect on the composite outcome of all-cause mortality would depend on the ratio of vascular to non-vascular deaths in a particular setting: the treatment would appear to be beneficial when vascular deaths predominated, but harmful when non-vascular deaths predominated. Instead, the application of the proportional reductions and increases in the separate causes of death to the expected rates of these outcomes in the population of interest would yield estimates of the absolute effects of treatment on each type of death and, thus, of the net effect on survival for particular types of individual (as is described later in the context of statin therapy\(^{41}\)).

The lack of sensitivity and generalisability of composite outcomes can be even more problematic when they

Table 1: Illustrative example of the robustness to misclassified outcomes (false positives and missing outcomes) of within-trial comparisons of the effects of treatment in randomised controlled trials

<table>
<thead>
<tr>
<th></th>
<th>Active (n=10 000)</th>
<th>Control (n=10 000)</th>
<th>Relative reduction</th>
<th>Absolute reduction</th>
<th>Z score*</th>
</tr>
</thead>
<tbody>
<tr>
<td>True events</td>
<td>800 (8.0%)</td>
<td>1000 (10.0%)</td>
<td>20%</td>
<td>2.0%</td>
<td>4.9</td>
</tr>
<tr>
<td>Extra false outcomes (evenly distributed)</td>
<td>890 (8.9%)</td>
<td>1090 (10.9%)</td>
<td>18%</td>
<td>2.0%</td>
<td>4.7</td>
</tr>
<tr>
<td>Missing real outcomes (unevenly distributed)</td>
<td>720 (7.2%)</td>
<td>900 (9.0%)</td>
<td>20%</td>
<td>1.8%</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>640 (6.4%)</td>
<td>800 (8.0%)</td>
<td>20%</td>
<td>1.6%</td>
<td>4.3</td>
</tr>
</tbody>
</table>

*For context, a Z score of 4.0 is equivalent to a p value of 0.0001. The numbers of participants in whom true events would not have occurred would be slightly different between the treatment groups, but this produces little imbalance in the numbers of false events that can be recorded among such patients in the two treatment groups when true events are relatively uncommon (as in this example). Consequently, false events have been approximately evenly distributed because they would not be affected by treatment assignment. By contrast, there would be fewer real outcomes to be missed in the active treatment group (since the treatment reduces the rate of the outcome), so the numbers of missed real event outcomes are unevenly distributed between the treatment groups.

Review
involve very disparate outcomes. It has been suggested that the assessment of statin therapy should be based on the composite outcome of all serious adverse events of any kind (eg, mixing vascular outcomes that are known to be prevented by statin therapy with outcomes in gastrointestinal, genitourinary, neuropsychiatric, and other systems that may not be affected).11 A key problem with such an approach is that it can prevent the identification of both specific benefits and specific hazards of treatment. For example, analyses of specific outcomes among the 25 673 randomised patients in the THRIVE trial were able to detect that niacin therapy (nicotinic acid) is associated with unexpected hazards (ie, increases in serious infections and bleeding)42 that would have been missed by analyses based on a composite of adverse events (as in the case of the AIM-HIGH trial43 of niacin).

Consideration of the effects of treatment on specific outcomes allows any differences in its effects to be determined, and its use can then be appropriately targeted at those who are likely to get more benefit than harm.

Figure 1: Similar proportional reductions in risks of major vascular events per mmol/L LDL cholesterol reduction in randomised trials of statin therapy among people with different presenting characteristics

Adapted from CTT Collaboration website. RRs are plotted for the combined comparisons of MVE rate in randomised trials of routine statin therapy versus no routine statin therapy and of more versus less intensive statin therapy, weighted per 1·0 mmol/L LDL cholesterol reduction at 1 year. The size of the squares is proportional to the numbers of events recorded (ie, statistical information) in the particular comparison. CHD=coronary heart disease. RR=rate ratio. MVE=major vascular event.

<table>
<thead>
<tr>
<th>Presenting characteristics</th>
<th>Total number of MVEs</th>
<th>Annual event rate in control arm (% per year)</th>
<th>RR (CI) per 1 mmol/L reduction in LDL cholesterol</th>
<th>p value for heterogeneity or trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treatment LDL cholesterol (mmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2.5</td>
<td>5756</td>
<td>43</td>
<td>0.78 (0.69–0.89)</td>
<td>p=0.22</td>
</tr>
<tr>
<td>≥2.5 to <3.0</td>
<td>4182</td>
<td>40</td>
<td>0.77 (0.70–0.85)</td>
<td></td>
</tr>
<tr>
<td>≥3.0 to <3.5</td>
<td>4604</td>
<td>41</td>
<td>0.76 (0.70–0.82)</td>
<td></td>
</tr>
<tr>
<td>≥3.5</td>
<td>10563</td>
<td>39</td>
<td>0.80 (0.77–0.84)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤65</td>
<td>13263</td>
<td>36</td>
<td>0.78 (0.75–0.82)</td>
<td>p=0.14</td>
</tr>
<tr>
<td>>65 to ≤75</td>
<td>9211</td>
<td>46</td>
<td>0.79 (0.74–0.83)</td>
<td></td>
</tr>
<tr>
<td>>75</td>
<td>2123</td>
<td>55</td>
<td>0.87 (0.76–0.99)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>19922</td>
<td>44</td>
<td>0.78 (0.75–0.81)</td>
<td>p=0.02</td>
</tr>
<tr>
<td>Female</td>
<td>5935</td>
<td>30</td>
<td>0.84 (0.78–0.91)</td>
<td></td>
</tr>
<tr>
<td>History of vascular disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHD</td>
<td>19097</td>
<td>56</td>
<td>0.79 (0.76–0.82)</td>
<td>p=0.18</td>
</tr>
<tr>
<td>Non-CHD vascular</td>
<td>1529</td>
<td>37</td>
<td>0.85 (0.73–0.94)</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>4331</td>
<td>18</td>
<td>0.75 (0.69–0.82)</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 1 diabetes</td>
<td>337</td>
<td>60</td>
<td>0.77 (0.58–1.01)</td>
<td>p=0.78</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>5621</td>
<td>51</td>
<td>0.80 (0.74–0.86)</td>
<td></td>
</tr>
<tr>
<td>No diabetes</td>
<td>18862</td>
<td>40</td>
<td>0.78 (0.76–0.82)</td>
<td></td>
</tr>
<tr>
<td>Treated hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>13939</td>
<td>45</td>
<td>0.80 (0.77–0.84)</td>
<td>p=0.11</td>
</tr>
<tr>
<td>No</td>
<td>10471</td>
<td>35</td>
<td>0.77 (0.73–0.81)</td>
<td></td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smokers</td>
<td>5225</td>
<td>47</td>
<td>0.79 (0.73–0.85)</td>
<td>p=0.88</td>
</tr>
<tr>
<td>Non-smokers</td>
<td>19728</td>
<td>39</td>
<td>0.79 (0.76–0.82)</td>
<td></td>
</tr>
<tr>
<td>5-year MVE risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5%</td>
<td>423</td>
<td>04</td>
<td>0.62 (0.47–0.81)</td>
<td>p=0.04</td>
</tr>
<tr>
<td>≥5% to <10%</td>
<td>1453</td>
<td>16</td>
<td>0.69 (0.60–0.79)</td>
<td></td>
</tr>
<tr>
<td>≥10% to <20%</td>
<td>7810</td>
<td>35</td>
<td>0.79 (0.74–0.85)</td>
<td></td>
</tr>
<tr>
<td>≥20% to <30%</td>
<td>9028</td>
<td>58</td>
<td>0.81 (0.77–0.86)</td>
<td></td>
</tr>
<tr>
<td>≥30%</td>
<td>6245</td>
<td>98</td>
<td>0.79 (0.74–0.84)</td>
<td></td>
</tr>
<tr>
<td>All patients</td>
<td>24957</td>
<td>48</td>
<td>0.79 (0.77–0.81)</td>
<td></td>
</tr>
</tbody>
</table>

For the CTT Collaboration website see www.cttcollaboration.org
Value of meta-analyses of randomised trials

Meta-analyses of randomised trials may be required when the effects of a treatment on some particular outcome are likely to be moderate and too few cases of it have occurred in any individual trial to assess the effects sufficiently reliably.\(^{12,44-47}\) For example, table 2 shows that a meta-analysis of 100 000 randomised patients (as is available for statin therapy\(^{39}\)) would have 90% statistical power at \(p=0.01\) to detect an absolute excess of 0.5% in the incidence of an event that occurs in 5% of patients in the control group (ie, a 10% proportional increase) and an absolute excess of 1% for events that occur in 20% of patients in the control group (ie, a 50% proportional increase). Meta-analysis can also reduce the impact of selective emphasis on effects observed in particular trials that may overestimate the real effects\(^{13,46}\) (eg, the excess of diabetes cases with statin therapy first noticed in the JUPITER trial\(^{48}\) was found to be smaller in other statin trials\(^{49}\)) or may not even be real (eg, the small excesses of incident cancer cases in the CARE trial\(^{50}\) and the PROSPER trial\(^{51}\) were not confirmed by the much larger numbers of cases in the other statin trials\(^{52,53}\)).

However, meta-analyses of randomised trials are not typically required to detect large effects of a treatment on common outcomes. Instead, individual trials will suffice if they have recorded large enough numbers of cases of the outcome of interest—eg, a trial of 2500 patients allocated to active treatment versus 2500 allocated to matched placebo would have at least a 90% chance at \(p=0.01\) of detecting a 20% versus 15% difference in event rate if it existed; and a trial of 20 000 patients would have similar statistical power to detect (or refute) reliably an absolute difference as small as about 2% (ie, 20% vs 18%; table 2). In such circumstances, it may be more informative to consider the separate within-trial comparisons in each of the relevant randomised trials in order to determine whether (when considered in the context of the other trials) any of them do provide compelling evidence that there are any relevant effects on any specific outcomes (eg, muscle-related outcomes reported in the large randomised placebo-controlled trials of prolonged exposure to statin therapy; appendix).

In addition, an individual trial that has been specifically designed to assess the effects of a treatment on some particular outcome especially carefully (eg, serial assessments of cognitive function\(^{66-68}\) and of lens opacities\(^{69-71}\) in statin trials) may be more sensitive to any real effects of treatment than would be a meta-analysis based on the less specific assessment of the outcome in all of the other randomised trials—or, to an even greater extent, on non-randomised comparisons involving data recorded for entirely different purposes in observational studies.

Generalisability of evidence on efficacy from randomised trials

It has been suggested that, because of the exclusion criteria in randomised trials, results from observational studies based on use of a treatment in routine practice (sometimes referred to, misleadingly, as “real world evidence”) are more widely generalisable about its effects.\(^{10,11,22,42-44}\) However, meta-analyses of randomised trials with different eligibility criteria that have included large numbers of different types of patients (eg, although some statin trials excluded people who were older or who had particular conditions, other statin trials did not) may be able to address this putative limitation by yielding unbiased information based on sufficient numbers of individuals with different characteristics that can then be widely generalised (eg, with the statin trials,\(^{29-34,65}\) older and younger people, women and men, individuals with and without pre-existing occlusive vascular disease or other conditions).\(^{62-64}\) Such analyses would not, of course, provide direct evidence among those types of patients who were excluded largely or wholly from randomised trials because the treatment was considered to be contraindicated. However, if the treatment is not used routinely in such patients, nor would observational studies provide such evidence and, in most cases, the effects in such circumstances would be of limited clinical relevance.

The risk ratio for a particular outcome in a randomised controlled trial is the ratio of the proportion of the treated patients and control patients who develop the specific outcome. As a result, only those individuals who have the outcome contribute information on the risk ratio. Moreover, inclusion of individuals who will not have the outcome (such as most of those in a primary prevention population) would not change the effect of treatment in individuals who will have it.\(^{72}\) In general, therefore, any proportional reductions or increases in the rate of a specific outcome should be expected to be similar in different circumstances. Consequently, when a treatment has been shown unequivocally to affect the rate of a particular outcome, definite evidence of an effect in each separate type of person is not generally required. Instead, it may be more appropriate to conclude that the treatment produces similar proportional effects on that outcome among different patient types (as has been found generally with statin therapy\(^{33,34}\)), unless compelling evidence emerges that the effect in a particular group of patients differs from the overall risk ratio.\(^{13,46-47}\)

This feature of similar proportional effects of treatment on specific outcomes is useful for generalising results from randomised trials. It is, of course, the absolute—not
Review

Panel 2: Contribution of observational studies for assessing treatment effects

Detect large effects on rare outcomes
Exposure to treatment in large numbers of individuals in observational studies based on health-care databases or on post-marketing case reports enables large effects (adverse or beneficial) to be detected on outcomes that would otherwise not be expected to occur (ie, are usually rare).

Assess effects of prolonged exposure
Observational studies may involve data on prolonged exposure to a treatment that can enable long-term effects to emerge, although the available information about duration and dose may be incomplete in available databases, limiting the inferences that can be drawn.

Biases due to differences in risks
Even when associations between treatment and health outcomes remain after statistical adjustment for observed differences between different groups of individuals, the associations may still reflect residual confounding due to differences that were assessed incompletely or not at all.

Biases due to differences in ascertainment
Patients treated in routine practice know they are taking a particular drug and, indeed, may be told it has side-effects and be monitored more closely. Consequently, any associations with a treatment in observational studies may be biased by differences in reporting and detection of health outcomes between patients who are taking it and those who are not.

Generalisability of evidence
Application of the proportional effects of treatment on specific outcomes derived from randomised trials to the absolute rates of the outcomes derived from observational studies in the population of interest can be used to yield generalisable estimates of its absolute benefits and harms.

The proportional—effects on outcome that matter for an individual when considering the use of a treatment. However, application of the proportional effects of a treatment on specific outcomes from randomised trials to the absolute rates of these outcomes derived from observational studies in some particular population of interest (eg, for secondary prevention in patients at high risk of recurrent vascular events vs primary prevention in lower-risk individuals in the general population) can yield generalisable estimates of both the absolute benefits and the absolute harms of a treatment. Combination of these separate estimates then enables the net effect of using the treatment to be estimated for particular types of individual.

Generalisability of evidence on side-effects from randomised trials
It has been claimed that randomised trials yield under-estimates of rates of side-effects because they exclude patients in whom the treatment being studied causes adverse effects (eg, patients with so-called “statin intolerance”). However, for treatments that are not yet on the market or that have not yet been widely adopted into routine practice (as was the case during the recruitment phase of many of the large clinical outcome trials of statins), few patients will have previously been exposed to the treatment and excluded because of having had problems with it.

Some trials use a pre-randomisation run-in phase to improve the subsequent adherence to the randomly assigned treatment (whether active drug or placebo). Run-in phases involving the use of a placebo (as in about half of the large trials of statin vs control; appendix) would not lead to underestimates of the rates of side-effects. Indeed, by improving post-randomisation adherence, the sensitivity of randomised comparisons to detect any effects of treatment would be expected to be improved. Less commonly, trials have used run-in phases with the active drug (as in a few of the large statin trials; appendix), which may exclude some patients in whom the treatment might cause adverse effects soon after starting it (although, in one of the large statin trials, no differences in reasons for stopping treatment were observed between placebo and active phases of run-in). However, it is less likely that use of an active run-in would prevent the emergence of genuine side-effects during the later years of such trials. For example, it was the SEARCH randomised trial with an active run-in phase that identified a substantial proportional increase in the risk of myopathy with simvastatin 80 mg daily (a regimen that had been recommended for routine care) compared to simvastatin 20 mg daily (appendix).

For all of these reasons, evidence about side-effects from randomised trials is likely to be far more widely generalisable to routine practice than is often asserted.

Observational studies: limited additional value for assessing the effects of treatment when large-scale evidence exists from randomised controlled trials (panel 2)

Observational epidemiological studies have been extremely valuable for identifying associations of risk factors with disease (eg, smoking with lung cancer; blood pressure and cholesterol with cardiovascular disease), but their value for the assessment of the effects of treatment is more limited.

Potential to detect large effects on rare outcomes
Case reports to regulatory authorities or studies based on health-care databases often involve the exposure of large numbers of individuals to a treatment that is being used in routine practice. Consequently, they have the potential to detect large adverse effects on health outcomes that would not normally be expected to occur (eg, Reye’s syndrome with aspirin use in children; tendon disorders with fluoroquinolones; myopathy with statin therapy). Such studies are also able to detect large
beneficial effects of a treatment when a good outcome would otherwise not be expected (eg, insulin for diabetic ketoacidosis; penicillin for lobar pneumonia; ganciclovir for cytomegalovirus retinitis). However, because of the potential biases that are inherent in observational studies, they cannot be relied on for demonstrating the causal nature of treatment-related associations when the relative risks are moderate (eg, less than 3–4-fold) or relate to health outcomes that are common in the types of patient studied.\(^9\) In such circumstances, large observational studies may well yield associations of treatment with health outcomes that have small random errors (ie, are precise) but that are not causal.

This limitation is not confined to the assessment of beneficial treatment effects, but applies equally to the detection of harmful effects. For, although unintended adverse effects may be more plausible than any unintended beneficial effects, the potential impact of the biases in observational studies is similar irrespective of the direction of the associations. Consequently, when large-scale evidence from randomised controlled trials does exist (as it does for statin therapy), the additional value of information from non-randomised observational studies about treatment effects is very limited.

Potential to assess the effects of prolonged exposure to treatment

An oft-cited advantage of observational studies is that they may involve prolonged exposure to the treatment of interest. However, adequate data about the use of a treatment in health-care databases might not involve a duration of exposure that is longer than in the randomised trials. For example, in several prominently reported health-care database studies of statin therapy, the average treatment exposure ranged from 2 to 5 years\(^8\) (compared with about 4–5 years in the randomised trials designed to assess clinical efficacy and safety\(^9\)). Moreover, information about the duration and dose of the treatment might be incomplete in databases (eg, based on limited prescription data without information about actual use) that have not been compiled specifically for the purpose of assessing the effects of that specific treatment (eg, primary care or hospital data that are being used for patient care or administrative purposes).\(^10\)

In addition, whereas randomised trials assess the effects of a specific exposure (ie, a particular dose of a particular drug with information about adherence) on outcomes that are sought systematically, observational studies often only assess more general associations (eg, prescription of many different doses of a drug, or a class of drug, on ill-defined outcomes), which may prevent the detection of effects that are specific (eg, the higher rate of myopathy with simvastatin 80 mg daily than with 20 mg daily\(^7\)). Combination of precise information about the treatment that is received during a specific period in a randomised trial and prolonged follow-up of outcomes after the trial has ended (perhaps through linkage to electronic health records) may also enable the reliable assessment of the later effects of the treatment (as has been done for statin therapy\(^\text{10}\)\(^-\text{14}\)) while avoiding the potential biases that are inherent in observational studies.

Biases due to differences in underlying risks of health outcomes

The magnitude of the potential biases inherent in observational studies of treatment is often underestimated in the interpretation of associations that are found with health outcomes. Confounding by indication, or contraindication, occurs when the treatment being considered tends to be provided more, or less, often to individuals with medical conditions or other characteristics that are associated with increased, or decreased, risks of various health outcomes (which is, of course, what would be expected to occur in clinical practice\(^9\)). Bias may also be introduced by other differences in the underlying risks of developing health outcomes among the individuals who have received a particular treatment and the individuals with whom they are compared who have not received that treatment. Even when associations between the treatment and health outcomes remain after statistical adjustment for observed differences between these different groups of individuals, the adjusted associations might still reflect residual confounding due to differences in factors that were assessed incompletely or not at all (and so would not necessarily have been taken fully into account in adjusted analyses) or due to other inadequacies in the approach to adjustment (eg, using the wrong statistical model).\(^6,7,9,14,15\)

Consequently, relying on evidence from observational studies about the effects of treatment on common outcomes—rather than considering it to be hypothesis generating—may well have adverse consequences for patients and public health. For example, in observational studies, the use of hormone replacement therapy by post-menopausal women was associated with about 50% less coronary disease than among women who did not use it.\(^2,10\) This apparent protective effect was considered by many to be biologically plausible because of the marked differences in rates of coronary heart disease between men and women before the menopause, as well as the known effects of oestrogens on lipid profiles.\(^15\) As a result, hormone replacement therapy was widely prescribed to prevent coronary disease (even though it was not licensed for that purpose), becoming one of the most commonly used medications in high-income countries.

However, despite the widespread belief that this association was causal, large randomised trials were conducted and hormone replacement therapy was found not to protect against coronary heart disease.\(^16,17\) A range of retrospective explanations were proposed for this apparent discrepancy with the results in the observational studies (eg, that the wrong type of adjustment had been
used or the timing of initiating treatment mattered), but these were eventually refuted. Likewise, randomised trials have not confirmed the 30% higher risk of breast cancer found in observational studies of oestrogen-alone preparations, although the results for combined oestrogen–progestin preparations in these different types of study appear similar. Despite these discrepancies, the similarity of the direction—but not the size—of the differences in the rates of stroke and pulmonary embolism in observational studies and in randomised trials of hormone replacement therapy has been used to justify continued reliance on observational evidence, rather than as an illustration of the difficulty of determining which, if any, associations with treatment in observational studies provide a reliable basis for safe and effective care of patients and the public.

A number of reviews have compared the estimates of treatment effects from observational studies and randomised trials, but their methods have been criticised (chiefly because of concerns about the methods used to select the studies and compare the results) and their findings have been inconsistent. It has been concluded that these reviews identified many examples where the results for the same intervention were on average the same, but also many examples where the results differed. For example, there have been many claims about the benefits of various vitamin supplements based on observational studies that have been reliably refuted by large randomised trials. Similarly, when compared with the results from randomised trials of the effects of treatments for several different cancers, observational studies have generated improbable results despite controlling for comorbidity, extent of disease, and many other characteristics that were recorded in detailed databases (as is also the case for reported associations of statins with lower rates of cancer). These findings are consistent with empirical studies in which biases in observational studies were shown to be large enough to conclude falsely that treatment produced benefit or harm, with none of a range of statistical strategies (such as regression analysis or propensity matching) capable of adjusting adequately or predictably for bias.

Biases due to differences in the ascertainment of health outcomes

Observational studies of treatment effects are often based on health outcome data that have been recorded without consistent coding or validation. Moreover, by contrast with the situation in randomised controlled trials with masked treatment assignment (ie, when patients and their doctors do not know whether they are taking the active treatment or a matching placebo), patients being treated in routine practice know that they are taking a particular drug, as do their doctors. Indeed, the patients may have been specifically told that the treatment has potential side-effects (eg, patients given statin therapy are typically advised that serious muscle problems can occur, albeit rarely, and to advise their doctors if they develop muscle pain or weakness), and they may be more closely monitored by their doctors. Such biases may be exacerbated by concomitant changes in lifestyle recommended by the patients’ doctors (eg, the prescription of physical activity as well as statin therapy might lead to exercise-induced muscle pain being attributed to the drug). Consequently, assessment of the effects of a treatment in observational studies may be biased by differences in the reporting and detection of health outcomes between the patients who are taking it and those who are not.

However, although it has been shown that randomised controlled trials without masked treatment assignment can produce misleading estimates of treatment effects (particularly for subjective outcomes), the inability to make allowances for such ascertainment biases is rarely acknowledged adequately in the interpretation of observational studies (including for statin therapy). The magnitude of these biases can be large. For example, in a masked randomised trial among patients considered to be statin intolerant because of a history of muscle pain on statin therapy, myalgia was reported by about one-quarter of patients irrespective of whether they were taking atorvastatin 20 mg daily or placebo tablets (with PCSK9 inhibitor injections) for 24 weeks, but the rates fell below 5% immediately after stopping either the active or placebo tablets. These results indicate the extent to which misattribution of adverse events can bias assessments of treatment in observational studies which, necessarily, do not involve masked ascertainment of outcomes.

Potential benefits and harms of lowering LDL cholesterol concentrations

Associations between LDL cholesterol and vascular disease

By contrast with observational studies of treatment, observational epidemiological studies are valuable for the assessment of causal risk factors. In particular, such studies have shown that there is a continuous positive association between blood concentrations of LDL cholesterol and the rates of coronary heart disease events in different populations, without any suggestion within the range that has been studied of a threshold below which a lower concentration is not associated with a lower risk. The absolute difference in coronary disease risk associated with a given absolute difference in LDL cholesterol is greater at higher concentrations (figure 2A), which helps to explain the emphasis in previous treatment guidelines on individuals with hypercholesterolaemia. However, if risk is plotted on a logarithmic scale, then the proportional difference in risk associated with a given absolute difference in LDL cholesterol concentration is similar throughout the range (figure 2B).

Consequently, with a treatment that acts through lowering LDL cholesterol, the proportional reduction in
cardiovascular disease risk per mmol/L reduction in LDL cholesterol should be expected to be similar irrespective of the starting cholesterol concentrations (rather than, as has been suggested for statin therapy, being evidence that the effects are not related to cholesterol lowering). Moreover, the absolute reduction in vascular risk per mmol/L reduction in LDL cholesterol would also be expected to be similar for individuals who have similar levels of risk but present with different cholesterol concentrations. The results of randomised controlled trials of statin therapy support these epidemiological expectations (as described later), and treatment guidelines now tend to focus on an individual’s risk of having atherosclerosis-related events as well as on their LDL cholesterol concentration.

Lower concentrations of cholesterol have been associated in observational studies with higher rates of all-cause mortality, particularly in older people. However, such associations can be shown not to be causal. For example, using the Mendelian randomisation approach, lower genetically determined LDL cholesterol concentrations are associated with lower all-cause mortality even among individuals aged older than 90 years. It appears that pre-existing disease causes lower cholesterol concentrations (so-called “reverse causality”). Spurious associations can often be reduced in analyses of observational epidemiological studies of risk factors by censoring the first few years of follow-up.

Causal relationship between LDL cholesterol and vascular disease

Observational studies can provide evidence about associations of risk factors with health outcomes, but they do not necessarily suffice to confirm the causal nature of such associations. In the case of LDL cholesterol, several additional sources of evidence have helped to show that the continuous association with atherosclerotic disease is causal. These include experimental studies of atherosclerosis in animals, monogenic and polygenic associations in human beings, and randomised trials of LDL cholesterol-lowering therapy (which also assess the extent of risk reversibility and its timescale).

Experimental studies in animals have shown that diets that raise LDL cholesterol concentrations increase the extent of atherosclerosis in the arterial wall, and that lowering LDL cholesterol concentrations with either diet or drugs (including statins) can reduce atherosclerosis. Genetic disorders in human beings (in particular, LDL receptor mutations) that cause large elevations of LDL cholesterol concentrations are associated with substantially elevated rates of atherosclerotic disease.

Moreover, these disorders (ie, familial hypercholesterolaemia) provide compelling evidence of dose effects, whereby individuals in European and North American populations who inherit the abnormal genetic variant from both parents typically have LDL cholesterol concentrations greater than 13 mmol/L and coronary events before the age of 20 years, whereas those who inherit the abnormal variant from one parent typically have concentrations greater than 8 mmol/L and events in early middle-age. In addition, several common genetic variants have been identified that cause much smaller increases in LDL cholesterol concentration and these are associated with correspondingly smaller increases in the risk of coronary events, providing further evidence in support of a causal association.

Proven beneficial effects of lowering LDL cholesterol concentration with statin therapy

In the pre-statin era, meta-analyses of randomised controlled trials of cholesterol-lowering diets, drugs, and ileal bypass surgery showed that, within a few years of reducing blood cholesterol concentrations, rates of non-fatal myocardial infarction and coronary death are reduced. In addition, the randomised trials that involved larger and more prolonged cholesterol reductions yielded larger reductions in the rates of coronary events. However, it was suggested that these beneficial effects might be offset by excesses in non-coronary deaths and cancers, which generated uncertainty about the overall benefits of lowering cholesterol.

The development of statins, which can lower LDL cholesterol concentration to a greater extent than any of the previously available treatments, provided an opportunity to obtain clear evidence about the beneficial effects of LDL cholesterol lowering on atherosclerotic events and deaths, as well as to determine whether it produces adverse effects on other causes of major morbidity and mortality. For, although it may not always be possible to distinguish between adverse events caused by lowering LDL cholesterol concentration and those due to off-target effects of statins (such as
myopathy), reliable evidence of a lack of adverse effects with statin therapy should be generalisable about the safety of lowering LDL cholesterol concentrations per se.

Effects of statin therapy on LDL cholesterol concentrations

During the past 20 years, the increasingly widespread use of statin therapy among individuals who are known to have occlusive vascular disease or are considered to be at increased risk of cardiovascular events for other reasons (eg, having high cholesterol concentrations or other risk factors, such as older age, hypertension, or diabetes) has been associated with downward shifts in the distributions of LDL and total cholesterol concentrations in many populations.\(^{79,80}\) In addition, because of the tendency for statin therapy to be prescribed more commonly to individuals with elevated LDL cholesterol concentrations, the proportions with high concentrations have been preferentially reduced.\(^{79-80}\) Representative data from population-based studies conducted before evidence of beneficial effects of statin therapy on fatal and non-fatal vascular events emerged from large randomised trials indicate that average LDL cholesterol concentrations in European and North American populations among people in middle and older age are about 4 mmol/L in the absence of statin therapy.\(^{31,32}\)

The proportional reductions in LDL cholesterol achieved with statin therapy are not materially affected by the starting LDL cholesterol concentration or by other patient characteristics (such as age, sex, vascular risk, genetic markers).\(^{11,16}\) Different statins have different potencies, with the newer agents (eg, atorvastatin and rosuvastatin) able to produce larger reductions in LDL cholesterol per mg of drug than the older agents (eg, simvastatin and pravastatin; table 3).\(^{31,32}\) Irrespective of the statin used, each doubling of the dose produces an extra reduction of about 6 percentage points in LDL cholesterol (eg, 43% vs 49% reductions with atorvastatin 20 mg vs 40 mg daily). The American College of Cardiology/American Heart Association 2013 Blood Cholesterol Guideline classified statin regimens as being of low intensity (eg, <30% LDL cholesterol reduction with simvastatin 10 mg daily), moderate intensity (eg, 30% to <50% reduction with simvastatin 20–40 mg, atorvastatin 10–20 mg, or rosuvastatin 5–10 mg daily), or high intensity (eg, ≥50% reduction with atorvastatin 40–80 mg or rosuvastatin 20–40 mg daily).\(^{40}\) Use of high-intensity statin therapy would be expected to reduce LDL cholesterol by at least 2 mmol/L in individuals who present with concentrations of 4 mmol/L or more (ie, about half of the population in the absence of statin therapy\(^{31,32}\)), but by only about 1 mmol/L in those presenting with concentrations of 2 mmol/L. Consequently, since the proportional reductions in rates of vascular events with statin therapy are related to the absolute reductions in LDL cholesterol that are achieved, intensive statin therapy should be focused on patients at higher risk of vascular events rather than just on those with high cholesterol concentrations.\(^{32,33,186}\)

The Cholesterol Treatment Triallists’ (CTT) Collaboration was established to conduct meta-analyses of individual patient data from all of the randomised controlled trials of statin therapy that were scheduled to involve at least 2 years of treatment in at least 1000 patients.\(^{79}\) Pre-specification of the inclusion of a defined set of large trials and of the approach to their analysis before the results of any of the trials were available was intended to avoid selection bias. During the scheduled study treatment periods (which were typically about 5 years), the average reduction in LDL cholesterol was about 1.0 mmol/L in the trials that compared the effects of allocating routine statin therapy versus no routine statin therapy, and it was further reduced by about 0.5 mmol/L in the trials that compared allocation to more versus less intensive statin regimens.\(^{19}\) That is, based on combination of the intention-to-treat analyses of these two sets of trials, allocation to an intensive statin regimen versus no routine statin therapy reduced LDL cholesterol concentrations by about 1.5 mmol/L. However, such comparisons underestimate the LDL cholesterol reductions that can be achieved by actually taking a particular regimen, since some of the patients did not take their assigned statin therapy or more intensive statin therapy throughout the scheduled study treatment period, whereas some of the patients in the control groups started to take a statin or a more intensive regimen.\(^{79}\) Instead, based on the LDL cholesterol reductions that can be achieved (table 3), the use of more intensive statin therapy would have been expected to reduce LDL cholesterol by about 2 mmol/L in such patients.

Reductions in rates of major vascular events (panel 3)

The prespecified purpose of the CTT meta-analyses was to assess the effects of lowering LDL cholesterol on atherosclerotic events in different types of patient more reliably than would be possible in any of the separate randomised trials and (given previous concerns about cholesterol-lowering therapy) to determine whether there

Table 3: Average relative reductions in LDL cholesterol concentrations with different doses of commonly used statins\(^{31,32}\)

<table>
<thead>
<tr>
<th>Daily dose of different statins</th>
<th>5 mg</th>
<th>10 mg</th>
<th>20 mg</th>
<th>40 mg</th>
<th>80 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pravastatin</td>
<td>15%</td>
<td>20%</td>
<td>24%</td>
<td>29%</td>
<td>33%</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>23%</td>
<td>27%</td>
<td>32%</td>
<td>37%</td>
<td>42%</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>31%</td>
<td>37%</td>
<td>43%</td>
<td>49%</td>
<td>55%</td>
</tr>
<tr>
<td>Rosuvastatin</td>
<td>38%</td>
<td>43%</td>
<td>48%</td>
<td>53%</td>
<td>58%</td>
</tr>
</tbody>
</table>

Shaded boxes indicate regimens that can produce about a halving or more in LDL cholesterol concentrations (largely irrespective of patient characteristics, including presenting concentrations of cholesterol). The 2016 cost for generic atorvastatin 40 mg daily in the UK is about £2 per 28 days of treatment;\(^{162}\) rosvastatin 20 mg daily currently costs about £25 per month;\(^{163}\) but it became available as a generic in the USA during 2016.

The Cholesterol Treatment Triallists’ (CTT) Collaboration was established to conduct meta-analyses of individual patient data from all of the randomised controlled trials of statin therapy that were scheduled to involve at least 2 years of treatment in at least 1000 patients.\(^{79}\) Pre-specification of the inclusion of a defined set of large trials and of the approach to their analysis before the results of any of the trials were available was intended to avoid selection bias. During the scheduled study treatment periods (which were typically about 5 years), the average reduction in LDL cholesterol was about 1.0 mmol/L in the trials that compared the effects of allocating routine statin therapy versus no routine statin therapy, and it was further reduced by about 0.5 mmol/L in the trials that compared allocation to more versus less intensive statin regimens.\(^{19}\) That is, based on combination of the intention-to-treat analyses of these two sets of trials, allocation to an intensive statin regimen versus no routine statin therapy reduced LDL cholesterol concentrations by about 1.5 mmol/L. However, such comparisons underestimate the LDL cholesterol reductions that can be achieved by actually taking a particular regimen, since some of the patients did not take their assigned statin therapy or more intensive statin therapy throughout the scheduled study treatment period, whereas some of the patients in the control groups started to take a statin or a more intensive regimen.\(^{79}\) Instead, based on the LDL cholesterol reductions that can be achieved (table 3), the use of more intensive statin therapy would have been expected to reduce LDL cholesterol by about 2 mmol/L in such patients.

Reductions in rates of major vascular events (panel 3)

The prespecified purpose of the CTT meta-analyses was to assess the effects of lowering LDL cholesterol on atherosclerotic events in different types of patient more reliably than would be possible in any of the separate randomised trials and (given previous concerns about cholesterol-lowering therapy) to determine whether there
were adverse effects on non-vascular causes of death and site-specific cancers. Consequently, data were sought for each of the eligible trials about the baseline characteristics of each patient and about myocardial infarctions, strokes, and coronary revascularisations during each year (after the first) that it continues to be taken. Consequently, lowering LDL cholesterol by 2 mmol/L reduces risk by about 45%.

- Lowering LDL cholesterol by 2 mmol/L with an effective statin regimen for about 5 years in 10 000 patients would typically prevent major vascular events in about 1000 (10%) patients at high risk of heart attacks and strokes (eg, secondary prevention) and 500 (5%) patients at lower risk (eg, primary prevention).
- Despite reports based largely on non-randomised observational studies, there is not good evidence that statin therapy produces beneficial effects on other health outcomes (eg, cancer, infections, respiratory disease, arrhythmias).

Figure 3: Proportional major vascular event reductions versus absolute LDL cholesterol reductions

![Figure 3](https://example.com/figure3.png)

- **Panel 3: Proven beneficial effects of statin therapy**
 - Effective low-cost statin regimens (eg, generic atorvastatin 40 mg daily costs about £2 per month) reduce LDL cholesterol by more than 50% (ie, at least 2 mmol/L in individuals presenting with LDL cholesterol concentrations of ≥4 mmol/L).
 - Large-scale evidence from randomised trials shows that each 1 mmol/L reduction in LDL cholesterol with statin therapy produces a proportional reduction of about 25% in the rate of major vascular events (coronary deaths, myocardial infarctions, strokes, and coronary revascularisations) during each year (after the first) that it continues to be taken. Consequently, lowering LDL cholesterol by 2 mmol/L reduces risk by about 45%.
 - Lowering LDL cholesterol by 2 mmol/L with an effective statin regimen for about 5 years in 10 000 patients would typically prevent major vascular events in about 1000 (10%) patients at high risk of heart attacks and strokes (eg, secondary prevention) and 500 (5%) patients at lower risk (eg, primary prevention).
 - Despite reports based largely on non-randomised observational studies, there is not good evidence that statin therapy produces beneficial effects on other health outcomes (eg, cancer, infections, respiratory disease, arrhythmias).

Adapted from CTT Collaboration website. Proportional risk reductions are plotted against the average LDL cholesterol reduction at 1 year in meta-analyses of trials of routine statin therapy versus no routine statin therapy with average LDL cholesterol reduction greater than and less than 1 mmol/L, and of trials of more versus less intensive statin therapy with a further 0·5 mmol/L reduction in LDL cholesterol. The vertical axis labels of 10%, 20%, and 30% are not equally spaced because they represent reductions on the log scale (ie, the labels are plotted at –log[0·9], –log[0·8], and –log[0·7], respectively). These risk reductions relate to the average effects on risk observed in these trials including the first year of study treatment (when the risk reduction is smaller) and to the LDL cholesterol reductions achieved at 1 year (rather than the average difference for the scheduled study treatment period), which may underestimate the effects of actually taking statin therapy long term (figure 4).

Figure 4: Proportional reductions in risks of major vascular events per mmol/L reduction in LDL cholesterol during each year of scheduled statin treatment, in randomised trials of routine statin therapy versus no routine statin use

![Figure 4](https://example.com/figure4.png)

Adapted from CTT Collaboration website. For each time period, RRs weighted by trial-specific LDL cholesterol reductions in randomised trials of routine statin therapy versus no routine statin use. 0·76 (0·65–0·87) indicates that risk is reduced by about one-quarter in each year that treatment continues (ie, the absolute benefits increase with increasing duration of treatment). As non-compliance to the randomly assigned treatment increased with longer duration in the trials (because of study statin therapy being stopped or because of statin therapy being started in the control group), the per mmol/L reductions based on LDL cholesterol reductions at 1 year are likely to underestimate the reductions in MVE risk per mmol/L LDL cholesterol reduction later in these trials. p<0·0001 for test of heterogeneity between RR in first year and RR in 1–5 years. RR=risk ratio. MVE=major vascular event.
trials of more versus less intensive statin regimens, the average 0·5 mmol/L further reduction in LDL cholesterol yielded a 15% further proportional reduction in the rate of major vascular events (figure 3), corresponding to a 28% reduction (ie, a risk ratio of 0·72) per mmol/L further LDL cholesterol reduction during each year of treatment (with no apparent delay after increasing the intensity of statin therapy).**

Consequently, the proportional reduction in the risk of major vascular events per mmol/L was about one-quarter in the trials of statin versus no statin (after an initial delay) and of more versus less intensive therapy. Based on the combined findings from these two sets of trials, it can be estimated that reducing LDL cholesterol concentrations by 2 mmol/L would reduce the risk of major vascular events by about 45% (derived as \([1 - (0·72)^2]) \times 100\) during each year treatment is continued. In principle, even larger reductions in LDL cholesterol would be expected to produce even larger risk reductions (eg, 60–70% with 3–4 mmol/L LDL cholesterol reductions); however, this is likely only to be clinically relevant in limited circumstances (eg, for individuals with familial hypercholesterolaemia who have very high LDL cholesterol concentration).

In these meta-analyses, statin therapy produced similar proportional reductions per mmol/L LDL cholesterol reduction in the risks of each of the main components of the composite outcome of major vascular events (ie, myocardial infarctions and coronary deaths; strokes of any type; or coronary revascularisations).** The proportional reductions in major vascular events were also similar among different types of patient.** For example, as would be expected from the log-linear associations in observational epidemiological studies between coronary disease risk and cholesterol concentration (figure 2B), the proportional reductions in risk per mmol/L reduction were about the same irrespective of the concentrations of cholesterol at presentation (figure 1). The proportional risk reductions appeared to be smaller among individuals aged older than 75 years who were included in these trials, but they had a higher prevalence of severe heart failure and end-stage renal disease (conditions associated with non-atherosclerotic vascular outcomes not much influenced by lowering LDL cholesterol).

Moreover, since the absolute risks of major vascular events were higher among older individuals, the absolute benefits were of similar size to those among younger individuals. The proportional risk reductions also appeared to be slightly smaller among the women included in these trials. However, this apparent difference could be accounted for largely by differences in non-sex-related characteristics, and the relative effects were similar for men and women at equivalent risk of cardiovascular events.** The risks of major vascular events were reduced in secondary prevention as well as in primary prevention (including among individuals with diabetes or hypertension),** but the proportional reductions were somewhat larger among lower-risk individuals. This finding is consistent with results from Mendelian randomisation studies, which indicate that genetically determined exposure to lower LDL cholesterol concentrations before atherosclerosis has developed may produce larger risk reductions.**

In general, the absolute benefits of using statin therapy depend on an individual’s absolute risk of atherosclerotic events and the absolute reduction in LDL cholesterol that can be achieved. For example, 5 years of treatment with a statin regimen that lowers LDL cholesterol by 2 mmol/L would be expected to prevent major vascular events in about 1000 (10%) higher-risk patients per 10000 treated and in about 500 (5%) lower-risk patients per 10000 treated (figure 5; which also provides estimates of the absolute benefits with smaller LDL cholesterol reductions).** The continued follow-up of patients beyond the end of the trials has found that the benefits of statin therapy persist (and may even become larger) for many years after the differences in statin use between the randomised groups have ceased. However, of more relevance for a treatment that is intended to be continued for life once it has been started,
the meta-analyses show that statin therapy reduces the risk of major vascular events during each year that it is continued (figure 4). Consequently, even larger absolute benefits would be expected with statin therapy that is continued for longer than the average of about 5 years in these randomised trials.

Reductions in coronary mortality

Overall in the CTT meta-analyses, there was a statistically robust 12% proportional reduction in vascular mortality per mmol/L LDL cholesterol reduction (figure 6), attributable chiefly to a 20% proportional reduction in coronary deaths (with, as was seen for major vascular events, a greater proportional effect after the first year of treatment), along with an 8% reduction in other cardiac deaths (some of which, such as those due to arrhythmias or heart failure, may not be due to atherosclerotic causes and so not amenable to LDL cholesterol-lowering therapy) and little effect on death due to all types of stroke combined. Both for the aggregate of all vascular deaths and for coronary and non-coronary causes considered separately, the proportional reductions in risk per mmol/L LDL cholesterol reduction appear to be similar in patients with and without pre-existing vascular disease, and in those who present at different levels of baseline vascular risk, as well as in other subgroups that have been considered.

As discussed above, when there is compelling evidence of an effect of a treatment on a particular outcome (ie, vascular mortality) and this is supported by the effects on related outcomes (ie, the even more statistically robust reductions in non-fatal major vascular events with statin therapy), then the appropriate question to ask is whether there is good evidence that the treatment does not reduce that outcome in different circumstances (rather than whether there is direct evidence of benefit in every circumstance). In the aggregate of all of the trials in the CTT meta-analyses, too few vascular deaths occurred among lower-risk participants for reliable direct assessment of the effects of statin therapy in such individuals considered in isolation (as has been proposed by some commentators). However, the proportional risk reduction was statistically compatible with the reduction observed in higher-risk participants (trend p=0.7) and it was supported by the clear reduction in major vascular events among lower-risk patients. Similarly, although there were too few women in these trials to assess the effects on vascular mortality directly (which has been the basis of assertions that statin therapy is not beneficial for women), the proportional reductions were similar among women and men (interaction p=0.8) and were reinforced by definite reductions in major vascular events among women.

Consequently, it is reasonable to conclude that statin therapy produces proportional reductions of at least 20% in coronary mortality per mmol/L LDL cholesterol reduction among people at different levels of occlusive vascular risk irrespective of their sex and, assuming that the proportions of vascular deaths due to coronary and non-coronary causes are similar, of 12% in deaths from all vascular causes. The availability of additional evidence from large trials (such as the HOPE-3 trial in primary prevention and the ongoing STAREE trial in people aged older than 70 years) will provide more direct evidence about the effects in particular circumstances.

Lack of effects on non-vascular mortality and cancer

The CTT meta-analyses involved over 6000 non-vascular deaths, and there was no suggestion that lowering LDL cholesterol concentration with statin therapy had an effect on any non-vascular cause of death, including cancer (figure 6). In a large database analysis, a few years of statin therapy was associated with a 15% proportionally lower rate of cancer-related mortality after adjustment for the potential confounding factors that had been recorded. Some other observational studies have reported similar associations with cancer incidence, and as much as a halving in colon cancer incidence and prostate cancer mortality. By contrast, there were small excesses of incident breast cancer in the CARE trial and of incident cancer at all sites in the PROSPER trial among patients who were randomised to receive statin therapy. However, based on more than 10000 cases of incident cancer in the CTT meta-analyses (including CARE and PROSPER), there were no apparent effects—either overall or at any particular site—during an average of 5 years of statin therapy (figure 7). Nor were there any effects on incident cancer among any particular type of patient, including older individuals (by contrast with claims of hazards). Some of these trials have extended follow-up beyond the scheduled study treatment period (after which the use of statin treatment in the

Figure 6: Effects of lowering LDL cholesterol with statin therapy on cause-specific mortality in meta-analyses of randomised trials of statin therapy

Adapted from CTT Collaboration website. Combined comparisons in randomised trials of routine statin therapy versus no routine statin therapy and of more versus less intensive statin therapy. RR=rate ratio.
Adapted from CTT Collaboration website. Combined comparisons in randomised trials of routine statin therapy

Figure 7: Effects of lowering LDL cholesterol with statin therapy on site-specific cancer in meta-analyses of randomised trials of statin therapy

<table>
<thead>
<tr>
<th>Total number of cancers</th>
<th>Annual cancer rate in control arm (% per year)</th>
<th>RR (CI) per 1 mmol/L reduction in LDL cholesterol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large bowel or intestine</td>
<td>1126</td>
<td>0.2</td>
</tr>
<tr>
<td>Other GI</td>
<td>1343</td>
<td>0.2</td>
</tr>
<tr>
<td>Prostate</td>
<td>1877</td>
<td>0.4</td>
</tr>
<tr>
<td>Illadder</td>
<td>646</td>
<td>0.1</td>
</tr>
<tr>
<td>Other GI</td>
<td>797</td>
<td>0.1</td>
</tr>
<tr>
<td>Respiratory</td>
<td>1692</td>
<td>0.2</td>
</tr>
<tr>
<td>Female breast</td>
<td>517</td>
<td>0.3</td>
</tr>
<tr>
<td>Haematological</td>
<td>614</td>
<td>0.1</td>
</tr>
<tr>
<td>Other/unspecified</td>
<td>1829</td>
<td>0.2</td>
</tr>
<tr>
<td>Any cancer</td>
<td>10 431</td>
<td>1.5</td>
</tr>
</tbody>
</table>

In summary, lowering LDL cholesterol concentrations with statin therapy has been shown to prevent both non-fatal and fatal major vascular events in a wide range of circumstances, and the absolute benefits depend chiefly on an individual’s absolute risk of such events and on the magnitude of the LDL reduction that is achieved (as well as the duration of treatment). Although statin therapy does not increase the risk of death from non-vascular causes or the incidence of cancer, other potential adverse effects of statin therapy still need to be considered when deciding whether to use statin therapy.

Proven adverse effects of statin therapy (panel 4)

- The only excesses of adverse events that have been reliably demonstrated to be caused by statin therapy are myopathy and diabetes mellitus, along with a probable excess of haemorrhagic stroke. These excesses are larger in certain circumstances, but the absolute risks remain small by comparison with the absolute benefits.

Increases in rates of myopathy

Myopathy (sometimes referred to as myositis) is typically defined as muscle pain, tenderness, or weakness that is accompanied by substantial increases in blood creatine kinase concentrations (eg, greater than ten times the laboratory upper limit of normal). Rhabdomyolysis is a severe form of myopathy involving muscle breakdown (usually identified by even larger increases in creatine kinase concentrations), with myoglobin released into the circulation and, in some cases, leading to acute renal failure or worsened renal function. Myopathy is rare in normal circumstances. Approved statin regimens have been associated both in observational studies and in randomised trials with large relative risks for myopathy, but typically with small absolute excesses (about 1 case per 10 000 people treated per year) and even smaller excesses in the incidence of rhabdomyolysis (about 2–3 cases per 100 000 treated per year). It usually resolves rapidly when statin therapy is stopped.

The underlying mechanisms for statin-related myopathy are not well understood. The risk of myopathy is dose related and it appears to depend on the levels of the statin in the circulation (as indicated by its association with a SLCO1B1 gene variant that reduces the transport of all statins from the blood into the liver).
Cerivastatin was withdrawn from use because the myopathy rate observed in post-marketing surveillance with approved doses was much higher than with other statins. In the SEARCH randomised trial, simvastatin 80 mg daily produced a more than ten-fold higher rate (at least 1 case of myopathy per 1000 patients treated yearly) than 20 mg daily (or 40 mg daily in HPS, about one case per 10 000 yearly), so the high-dose regimen is no longer recommended routinely. The rates of reports of myopathy in regulatory databases are also higher with higher doses of atorvastatin, although such spontaneous reports may be biased and the absolute risks are still small even with the highest approved dose. The rate of myopathy can be increased substantially when statins are used in combination with other drugs that affect their metabolism (in particular, inhibitors of cytochrome P450 or the P-glycoprotein, such as ciclosporin and azole antifungals) and in certain types of patient (eg, people of Asian origin and those who have functional variation in the \(SLCO1B1 \) gene). More moderate increases (eg, risk ratios of about 1·5 to 2) in the rate of myopathy are also seen in other circumstances (eg, in combination with certain antihypertensive drugs and in women, people aged older than 80 years, and those with diabetes).

Despite this causal association with myopathy, the evidence from randomised controlled trials indicates that statin therapy has little effect on less severe muscle pain (ie, myalgia) or weakness, although such symptoms are commonly attributed to statins in routine practice. Indeed, an excess of muscle-related symptoms has generally only been reported in trials when it occurs in combination with increased creatine kinase concentrations, with bigger relative risks reported with larger creatine kinase increases. For example, in the Heart Protection Study of simvastatin 40 mg daily versus placebo, the relative risk for any myalgia irrespective of increased creatine kinase concentrations was 0·99 (95% CI 0·95–1·03), whereas it was 1·7 (0·9–3·1) for myalgia in patients with a creatine kinase concentration more than four times the upper limit of normal, and 2·5 (0·8–8·0) for those with an increase of more than ten times the upper limit of normal. This result provides another illustration of the value of using specific outcomes to detect treatment effects, rather than composites of outcomes that are affected by treatment and those that are not.

Increases in rates of diabetes

In the JUPITER randomised trial among 17 802 patients without a history of vascular disease, concentrations of glycated haemoglobin were slightly higher after about 2 years among the patients allocated rosuvastatin 20 mg daily than among those allocated placebo (3·5% vs 3·8%; p=0·001). There was also a small excess of newly diagnosed diabetes (3·0% vs 2·4%; p=0·01), which corresponds to a 25% (95% CI 5–49) proportional increase. In subsequent meta-analyses of the available results from the randomised trials, standard statin dose regimens were associated with a proportional increase of about 10% in reported diabetes, and more intensive statin regimens (as used in JUPITER) with about a 10% further increase. This excess of diabetes diagnoses appeared soon after the start of statin therapy, chiefly among patients who had risk factors for diabetes (eg, elevated body-mass index or HbA\(_1c\), or impaired fasting glucose), and did not appear to get larger as treatment continued. Prior to these reports from randomised trials, statin therapy had not been associated with increased diabetes incidence in observational studies, although several reports of such associations have been published subsequently.

Genetic variants that reduce the activity of HMG-CoA reductase (which is analogous to inhibiting this enzyme with a statin) have been associated with an increased incidence of diabetes. Likewise, individuals with familial hypercholesterolaemia—in whom the numbers

Panel 4: Known adverse effects of statin therapy

- The only adverse events that have been reliably shown to be caused by statin therapy are myopathy (defined as muscle pain or weakness combined with large increases in creatine kinase blood concentrations) and new-onset diabetes mellitus, along with a probable increase in strokes due to bleeding (ie, haemorrhagic strokes).
- Typically, treatment of 10 000 patients for 5 years with a standard statin regimen (such as atorvastatin 40 mg daily) would be expected to cause about 5 cases of myopathy, 50–100 new cases of diabetes, and 5–10 haemorrhagic strokes.
- Despite reports based largely on non-randomised observational studies, there is good evidence that statin therapy does not cause adverse effects on other health outcomes (chiefly muscle pain and weakness) that have been claimed prevent a large proportion of patients from continuing it long term (so-called “statin intolerance”).
- Large-scale evidence from randomised trials rules out excesses of muscle pain and weakness with statin therapy of more than about 10–20 cases annually per 10 000 treated patients, with only about one of those cases being associated with large creatine kinase elevations (ie, myopathy) and requiring statin discontinuation.
- Absolute excesses of adverse events that are caused by statin therapy are not more than about 100–200 per 10 000 patients (ie, 1–2%) treated for 5 years, and it is unlikely that large adverse effects on serious adverse events await discovery.
- The harmful effects of statin therapy can usually be reversed without any residual effects by stopping it, whereas the harmful effects of heart attacks or strokes that occur because statin therapy has not been used can be devastating.
and function of LDL receptors on cell surfaces are reduced (by contrast with the increase in receptors produced by statins)—had been diagnosed with diabetes less frequently than were their unaffected relatives.22 These genetic experiments of nature provide support for the association of statin therapy with an excess of diabetes being causal. The mechanism is not known: it could be directly related to LDL cholesterol lowering,23 but it has also been hypothesised that increasing the numbers of LDL receptors (eg, with treatments like statins and PCSK9 inhibitors) might cause diabetes by enabling more cholesterol to enter and damage pancreatic cells.232

However, the clinical relevance of this excess of diabetes is less clear; in particular, the cardiovascular benefits of statin therapy are substantial despite any increase in diabetes-related morbidity. The underlying incidence of new-onset diabetes in the primary prevention trials was about 1% per year,46 so the absolute excess with statin therapy was about 10–20 per 10 000 per year (with this range reflecting the intensity of the statin regimen). If it is assumed that this statin-related diabetes is associated with as much as a doubling of cardiovascular risk (as is the case for spontaneously occurring diabetes24) then it might result in major vascular events among about 5–10 of 10 000 individuals with an underlying 5-year risk of 5–10% (eg, primary prevention) who are treated for 5 years. However, despite this potential adverse impact, lowering LDL cholesterol by 1–2 mmol/L with statin therapy prevents major vascular events among about 150–300 per 10 000 such individuals who are treated for 5 years (figure 5). The absolute benefits are even larger among higher-risk patients (including those who already have diabetes; figures 1 and 5)47,48 and, again despite any adverse impact of the diabetes excess, increase while statin therapy continues to be taken (figure 4). There is also no good evidence of an excess of microvascular complications related to diabetes with statin therapy (as described below).

Probable increases in rates of haemorrhagic stroke

In observational studies, blood cholesterol concentrations have been negatively associated with rates of haemorrhagic stroke, particularly at low concentrations of cholesterol in people with high blood pressure.237,238,243. In the randomised SPARCL trial among 4731 patients with prior cerebrovascular disease, allocation to atorvastatin 80 mg daily produced a definite reduction in ischaemic stroke (218 [9-2%] vs 274 [11-6%]; p=0-008), but there was also a possible increase in haemorrhagic stroke (55 [2.3%] vs 33 [1.45%]; p=0-02).24 When these results were combined with those from the other trials included in the CTT meta-analysis, there was a 21% (95% CI 5–41; p=0-01) proportional increase in the incidence of haemorrhagic stroke per mmol/L reduction in LDL cholesterol.22

In European and North American populations, this would typically translate into an absolute excess of about 5–10 haemorrhagic strokes per 10 000 patients in whom LDL cholesterol is reduced by 1–2 mmol/L for 5 years with statin therapy. The absolute excess would be expected to be bigger in individuals with pre-existing cerebrovascular disease49 and in populations (such as in Asia) where the underlying rates of haemorrhagic stroke are higher.17 However, statin therapy has been found to reduce the overall risk of stroke in many different settings (including in people who have already had a stroke50 or have hypertension51) irrespective of the underlying risk of vascular disease.12 For example, the increase in haemorrhagic stroke is outweighed by the reduction in the risk of ischaemic stroke, as well as in other occlusive vascular events and deaths, even among individuals with a 5-year risk of major vascular events below 10%.

Other adverse events that have been attributed to statin therapy

It has been claimed that statin therapy causes increased rates of other types of adverse health outcome, as well as symptomatic side-effects (chiefly muscle pain and weakness) that prevent a large proportion of patients from continuing to take statin therapy long term, often now referred to as “statin intolerance”.20–22,67–70 These claims have been chiefly based on reports to regulatory authorities of adverse events that have been attributed to a statin and on non-randomised observational studies based on health-care databases. However, they are not supported by the evidence from randomised controlled trials: in particular, statin therapy has been found to be no less well tolerated than placebo.51,53,238–240

As is discussed above, the potential biases inherent in studies without both randomly assigned control groups and masked ascertainment of outcomes limit their ability to demonstrate causal associations (except for large effects on rare outcomes). This is particularly the case for symptomatic adverse events that are attributed to statin use, especially if such reports have been prompted by guidance from clinicians to their patients or from patient information leaflets and other sources.19,20,241,242 By contrast, the inclusion of large numbers of different patient types in randomised controlled trials of prolonged statin therapy with different eligibility criteria provides unbiased evidence about adverse effects of treatment that are relevant to routine clinical practice.

Muscle-related outcomes (other than myopathy)

The adverse events most commonly attributed to statin therapy relate to muscle pain (ie, myalgia) or other muscle-related symptoms. For example, based on the NHANES database, it was reported that 23% of 671 statin users who did not have arthritis recalled having episodes of musculoskeletal pain (not muscle pain specifically) during the previous month compared with 18% of 4499 individuals who were not taking a statin.50 After statistical adjustment for the recorded differences (which were substantial) between the characteristics of the patients using and not using a statin, a prevalence ratio
of 1·33 (95% CI 1·06–1·67; p=0·02) was reported with statin use. In another observational study of statin use based on health-care data, musculoskeletal pain was reported by 73·4% of 6967 statin users compared with 71·6% of 6967 non-users during a median of 4·7 years, yielding an odds ratio of 1·09 (95% CI 1·02–1·18; p=0·02) after attempting to match patients with propensity scores based on recorded characteristics (which, again, differed substantially).

Both of these reports discussed the inability of such non-randomised studies to assess causality because of the potential for residual differences between patients who had used statins and those who had not (despite statistical adjustment for recorded characteristics). They also mentioned the potential for ascertainment bias due to patients who were taking statins being examined more frequently. However, neither report commented on the inherent lack of masking of treatment in such studies and the consequent potential for bias due to patients prescribed statins being advised by their doctors that they may cause muscle pain (whereas such advice is, of course, not given to patients not prescribed a statin). In addition, the result for NHANES excluded the 3058 individuals with arthritis in whom statin use was not associated with any excess of musculoskeletal pain (prevalence ratio 0·96, 95% CI 0·81–1·15). Such data-dependent selection of which results to emphasise introduces yet another potential source of bias into this assessment of the effects of statin therapy.

In general, the data available for observational studies based on health-care records do not derive from a systematic approach to seeking and recording information about symptoms or about the use of statin therapy. The PRIMO survey tried to overcome this limitation by systematically seeking information about the muscle symptoms that were reported. Among 7924 patients with hyperlipidaemia receiving high-dose statin therapy, 10·5% reported muscle symptoms at a median of about 1 month after starting it. However, those patients were required to give informed consent, which presumably involved advising them that statins can cause muscle problems and that the aim was to assess this outcome specifically, increasing the likelihood of prompting reports of muscle symptoms. In any case, since there was no control group in that study, it is not able to provide any useful information as to whether statins cause an increase in such symptoms.

It has been asserted that the rates of muscle-related symptoms caused by statins may be underestimated in randomised trials because of the exclusion of patients at risk of these problems (such as those with a history of muscle problems or creatine kinase elevations with statin therapy) and a perceived lack of systematic questioning and standardised definitions. However, as discussed above, few patients would have been exposed to statin therapy prior to recruitment into many of the large clinical outcome trials and use of a pre-randomisation placebo run-in phase in about half of the trials (appendix) would tend to increase the sensitivity of the subsequent randomised comparisons to detect any effects. The inclusion of large numbers of different types of patients in different randomised trials with different eligibility criteria also makes the evidence about any side-effects of statin therapy far more widely generalisable to routine practice than is often asserted.

In addition, use of masked control groups ensures that health outcomes are ascertained in the same way in the different treatment groups within any particular trial. Consequently, even though different randomised trials of statin therapy did not always use the same methods to identify or classify muscle symptoms (and may even have failed to detect some relevant events; table 1), each within-trial masked comparison should still provide a reliable assessment of the effects of statin therapy on muscle-related problems (and, indeed, on other adverse events). Moreover, even though some of the trials did not seek information about muscle-related problems, this would not introduce bias into the assessment of the effects of statin therapy based on the trials that did record them. In principle, the failure of some trials that did record such outcomes to publish their results does have the potential to introduce bias. However, muscle-related problems are common, and the large numbers of such outcomes that have been reported from many different trials (appendix) makes it unlikely that material bias exists in the published literature.

Consequently, the general lack of differences between the randomised treatment groups in the rates of the different muscle-related outcomes recorded in the large masked trials that are eligible for the CTT meta-analysis (some of which assessed such symptoms particularly carefully; appendix) provides strong evidence against the statin therapy causing much effect on muscle-related symptoms. In the JUPITER and HOPE-3 trials (of rosuvastatin 20 mg and 10 mg daily, respectively), there were small excesses in some muscle-related outcomes. However, no excesses of muscle-related outcomes were observed among the large numbers of patients in the other large randomised masked trials of long-term statin therapy. Nor were there excesses in those trials that sought information about the severity of any muscle symptoms or about stopping study treatment because of muscle symptoms.

The STOMP trial was specifically designed to assess the effects of statin therapy on several prespecified muscle-related measures. Compared with 236 patients allocated placebo, there were no apparent effects on muscle strength or endurance, aerobic performance, or physical activity among 232 statin-naive patients randomly allocated atorvastatin 80 mg daily for 6 months. Cases of unexplained muscle pain (23 [9·9%] vs 14 [5·9%]; p=0·1) and the subset of those cases defined as myalgia (19 [8·2%] vs 10 [4·2%]; p=0·08) were reported more commonly among patients allocated atorvastatin, but
these differences in the prespecified intention-to-treat comparisons were compatible with chance. In a meta-analysis of 26 masked trials (including STOMP) that involved at least 6 months of statin therapy, there was little difference in the reported rates of muscle problems during an average treatment duration of 3 years: 12.7% among 59,237 participants allocated statin versus 12.4% among 54,458 allocated placebo; an absolute excess of 0.3% (95% CI 0–0.7; p=0.06) or, alternatively, a range from zero to 20 cases per 10,000 years of treatment. Similarly, combination of the results in the large placebo-controlled trials that were eligible for the CTT meta-analyses (appendix) yields similar results: 5162 (11.7%) cases allocated statin therapy versus 5015 (11.4%) allocated placebo during an average of 5 years of treatment (p=0.10). Moreover, the difference is even smaller in the numbers of cases of muscle problems that resulted in study treatment being stopped: 201 (0.63%) versus 183 (0.58%); p=0.37.

Crossover trials, in which active and placebo treatment are allocated in a random sequence to each patient, may be particularly sensitive for detecting adverse effects that emerge rapidly after treatment starts and resolve soon after stopping treatment. No differences in myalgia or other pain measures were observed in a randomised re-challenge trial with three statin–placebo paired crossover comparisons among 8 patients with prior statin-related myalgia (with or without creatine kinase elevations), and 5 of the patients resumed statin therapy. In another trial, 86 patients were assigned simvastatin 40 mg daily (combined with amlodipine, losartan, and hydrochlorothiazide) or a matching placebo in a random sequence; muscle aching was reported more commonly on the active polypill (9 vs 1 cases), but it was not considered sufficiently troublesome to stop treatment. Among 492 patients with a history of not tolerating two or more statin regimens who were randomised to receive atorvastatin 20 mg daily then placebo or placebo then atorvastatin, muscle-related symptoms were reported by 43% of the patients when on atorvastatin but not on placebo versus 27% of them when on placebo but not on atorvastatin, yielding a risk ratio of 1.5 (although it has been suggested that this trial may not have been properly masked). In a similar crossover trial among 131 patients with a history of muscle complaints who were randomised to receive simvastatin 20 mg daily then placebo or placebo then simvastatin, muscle pain was reported by 36% of the patients when on simvastatin but not on placebo versus 29% of them when on placebo but not on simvastatin. These results indicate that, even among highly selected patients who have repeatedly attributed intolerable symptoms to statin therapy, some of the reported muscle-related intolerance may be due to the statin but most of it is not.

In summary, given the 0.3% absolute excess of muscle problems based on more than 10,000 reported cases in meta-analyses of randomised trials during 3–5 years of treatment (appendix), the excess rate of symptomatic muscle pain and other muscle-related problems due to statin therapy would appear to be no more than about 10–20 cases yearly per 10,000 treated individuals, with only about one of those cases associated with substantial elevations in creatine kinase concentrations (ie, myopathy) and requiring statin therapy to be stopped.

Memory and other aspects of cognition

Another adverse event that is commonly attributed to statin therapy is memory loss. Following a review of potential side-effects, the UK Medicines & Healthcare products Regulatory Agency (MHRA) decided in 2009 that memory loss should be listed as a side-effect in the product information for all statins. The stated rationale was that the evidence from re-challenge studies for cases of memory loss reported with statin therapy was not sufficient to rule out causality. Similarly, in 2012, the US Food and Drug Administration (FDA) required a statement to be added to the drug label for all statins that there was a potential for cognitive side-effects (such as memory loss and confusion). The basis for this decision was post-marketing event reports from individuals of ill-defined memory loss or impairment that appeared to be reversible after discontinuing statin therapy, and not because there was high quality evidence for a causal link. Indeed, a subsequent assessment of FDA surveillance databases found the reporting rates of cognition-associated adverse events for statins to be similar to those of other drugs used in patients with atherosclerotic disease.

Moreover, large randomised trials with masked control groups have provided evidence that allocation to statin therapy is not associated with an excess of memory loss or adverse effects on other aspects of cognitive function. In particular, cognitive measures were carefully assessed among the 5804 patients aged 70–82 years who were randomly allocated pravastatin 40 mg daily or placebo for an average of 3.5 years in the PROSPER trial. At baseline and then yearly, the Mini Mental State Examination and a battery of psychometric tests (ie, picture–word learning test, Stroop colour word test, and letter digit coding test) were administered. This elderly population might be expected to be especially sensitive to effects of treatment on cognition. However, these specific measures of cognitive function declined at the same rate in the statin and placebo groups, with no apparent differences between the randomised treatment groups.

Effects on memory were also systematically assessed among the 20,536 patients randomly allocated simvastatin 40 mg daily or placebo for an average of 5 years in the Heart Protection Study. At the end of the scheduled treatment period, the well-validated modified Telephone Interview for Cognitive Status questionnaire was administered to participants. A score of less than 22 was prespecified as indicative of cognitive impairment and, as would be expected, was more common among older individuals. However, despite this discriminatory ability,
there were no apparent differences between the simvastatin and placebo groups in the percentages of participants classified as cognitively impaired, either overall (23·7% with simvastatin vs 24·2% with placebo) or among the 5806 patients aged 75–85 years when assessed (34·6% vs 36·2%). Nor were there differences between the treatment groups in the numbers of participants reported to have developed dementia during follow-up (31 [0·3%] vs 31 [0·3%]), albeit that the numbers of events were small.

In addition, a randomised placebo-controlled trial among 1016 individuals without cardiovascular disease or diabetes has been conducted specifically to assess the effects of statin therapy on cognition (as well as on several outcomes related to mood and behaviour). In that trial, the patients were allocated simvastatin 20 mg daily, pravastatin 40 mg daily, or placebo for 6 months, with the administration of a battery of tests of cognition (ie, recurrent words, Elithorn maze, digital vigilance, and grooved pegboard) at baseline and at 1 month, 6 months, and 8 months. Although the trial was completed in 2004, results for the primary outcome of cognition have not yet been published in full (although selected results for some of the other outcomes have been69); however, the results reported in a meeting abstract indicate that the statin regimens tested were not associated with adverse effects on cognitive function, although the duration of exposure was comparatively short.69 Qualitative and quantitative systematic reviews of available evidence from randomised trials have also not found evidence of any adverse effects of exposure to statin therapy on a wide range of different cognitive measures.70,71

In a particularly rigorous assessment of effects on cognitive function, 640 patients aged 50–90 years with mild-to-moderate Alzheimer’s disease were randomised to receive atorvastatin 80 mg daily or placebo for 72 weeks.81 The co-primary outcomes were Alzheimer’s Disease Assessment Scale-cognitive subscale score and Alzheimer’s Disease Cooperative Study Clinical Global Impression of Change score, which were assessed at 3-monthly intervals for 18 months, along with several other measures of cognition at 6-monthly intervals. The results for both of these scores were slightly in favour of statin therapy, with no apparent differences between the treatment groups in any of the other cognitive outcomes assessed, which provides further reassurance. Similarly, there was a lack of any effect on measures of cognitive function in a randomised trial of simvastatin 20–40 mg daily versus placebo for 18 months in 406 patients with mild-to-moderate Alzheimer’s disease.84

Consequently, given the weight of evidence against adverse effects of statin therapy on memory or other aspects of cognition, it would now be appropriate for regulatory authorities to consider their removal from lists of potential adverse effects on the drug labels so that patients are not inappropriately deterred from using statin therapy.

Measures related to quality of life
Few of the large long-term randomised placebo-controlled trials of statin therapy specifically assessed quality of life, but there was no evidence of any adverse effect in those that did. For example, in the AFCAPS trial in primary prevention, an adapted version of the Medical Outcomes Study Short-Form General Health Survey was administered to 1126 patients assigned to lovastatin 20–40 mg daily or placebo. Mean scores at baseline were 84 for the emotional wellbeing measure and 83 for the health perception measure (range 0–100; with a higher score representing better quality of life) and differences between the treatment groups of ±1·2 points and ±1·5 points in these measures, respectively, at 1 year were excluded. In the LIPID trial among patients with coronary disease, an enhanced version of the utility-based quality-of-life questionnaire was administered at baseline and 1 year, 3 years, and 5 years later in a subcohort of 1112 randomised patients. The summary utility score was 0·98 (where 0=dead and 1=normal good health) at baseline, with a slight decline over time but no apparent difference in scores among survivors at 5 years between the pravastatin and placebo groups (0·978 vs 0·976).

The CRISP trial was conducted specifically to assess the effects of statin therapy on health-related quality of life in 431 men and women aged older than 65 years. At 6 months and 12 months, there were no apparent differences between patients allocated lovastatin 40 mg versus 20 mg daily versus placebo in terms of a battery of tests related to physical functioning, sleep, social support, depression, cognitive function, and health perception. Nor were there any apparent differences in reported symptoms, including worsening muscle pain (15·0% vs 14·5% vs 15·0%) at 6 months. Measures related to quality of life have also been assessed in randomised controlled trials of statin therapy in specific types of patient (eg, those with rheumatoid arthritis, systemic lupus erythematosus, peripheral arterial disease, and erectile dysfunction) with no good evidence of any adverse effects on any of these measures. Nor was there evidence for an adverse effect of statin therapy in a meta-analysis of randomised trials that assessed psychological outcomes.

Cataract and other vision-related outcomes
It has been claimed, based on an observational study of the records of more than 2 million people in general practice databases, that statin therapy produces absolute increases in the risk of developing cataract that are of about the same magnitude as the absolute reductions in major coronary events and cerebrovascular events when used in primary prevention for people with a 10-year risk of cardiovascular events of at least 20%. The report of that study mentions that observational studies have potential biases and that it was not designed to show causality. However, it goes on to describe the observed associations with cataract as “effects” of statin therapy (as
does a related website\(^{270}\) and refers to “numbers needed to harm”, which implies that there is a causal association.

In the report of that observational study, the authors stated that the study had advantages over the available randomised controlled trials of statin therapy because the trials lacked sufficient detail about health outcomes, duration of follow-up, and statistical power.\(^{89}\) However, with respect to data quality, information obtained from retrospective interrogation of databases created for other purposes (primary care records in this case) are not likely to be more reliable than information about adverse events sought prospectively and systematically in randomised trials. In addition, the ability to mask the treatment assignment in randomised trials helps to ensure that outcomes are ascertained and reported in the same way (within any particular randomised trial) both among the patients who are allocated to statin therapy and among those who are not, which helps to avoid biased ascertainment (by contrast with observational studies). With regard to the point about the duration of exposure to statin therapy, it was not reported explicitly in the observational study,\(^{89}\) but the person-years of follow-up indicate that it was not longer than in several randomised trials of the effects of statin therapy on clinical outcomes.\(^{71}\) Consequently, any real effects would be expected to have emerged in those trials, particularly since the risk of cataract was reported in this observational study to have been increased within a year of starting a statin.

With respect to statistical power, this very large observational study did involve more cases of different health outcomes than even the meta-analyses of the randomised trials of statin therapy. However, some of the larger trials involved sufficient numbers of cases of various outcomes to be able to confirm or refute quite moderate effects reliably. The relative risk of cataract in the observational study that was used to estimate the stated “numbers needed to harm” with statin therapy was about 1·30 (with 95% CIs of about 1·25 to 1·35 for men and women separately).\(^{89}\) Two large randomised trials have reported information on cataract: in the Heart Protection Study\(^{59}\) of simvastatin 40 mg daily and HOPE-3 trial\(^{60}\) of rosuvastatin 10 mg daily, cataracts were recorded among a total of 634 (3·8%) patients assigned 5–6 years of statin therapy versus 598 (3·6%) patients who had been assigned placebo (odds ratio 0·80, 95% CI 0·55–1·17). In addition, compared with control, statin therapy reduced the rate of decline of the estimated glomerular filtration rate (eGFR) by 0·41 mL/min per 1·73 m\(^2\) per year (95% CI 0·11–0·70). In addition, with control, statin therapy produced a smaller standardised mean difference in change in albuminuria or proteinuria of 0·65 standard deviations (95% CI 0·37–0·94) among about 5144 randomised patients who have diabetic retinopathy will provide more information about the retinopathy outcome. Statin therapy has been associated with lower rates of progression of age-related macular degeneration in observational studies, but there is only limited evidence from randomised trials to support this apparent protective effect.\(^{271}\)

The refutation of the claims of large effects of statin therapy on cataract, reinforced by the clear lack of effects on more sensitive measures of lens opacities, provides another illustration of how the combination of large size and the inherent biases of non-randomised studies can lead to associations of a treatment with an outcome that may be precise (ie, involve small random errors) but not causal.

Kidney-related outcomes

In light of the increased incidence of diabetes with statin therapy, it is appropriate to consider whether there are any excesses of microvascular complications related to the kidney. In a meta-analysis\(^{272}\) of 57 randomised controlled trials involving a total of about 140 000 patients treated for at least 6 months, statin therapy slowed the rate of decline of the estimated glomerular filtration rate (eGFR) by 0·41 mL/min per 1·73 m\(^2\) per year (95% CI 0·11–0·70). In addition, compared with control, statin therapy produced a smaller standardised mean difference in change in albuminuria or proteinuria of 0·65 standard deviations (95% CI 0·37–0·94) among about 5000 patients in 29 trials that had reported such data. Despite these beneficial effects, statin therapy did not appear to have an effect on progression to end-stage renal disease in randomised trials: 1261 (13·5%) cases on statin versus 1282 (13·6%) cases on control (odds ratio 0·98, 95% CI 0·90–1·07). It has been variously reported from observational studies that use of a statin is associated with increases, decreases, and no change in rates of kidney injury or failure.\(^{85,273–276}\) Short-term perioperative statin therapy...
increased blood concentrations of creatinine consistent with acute kidney injury in some randomised trials in cardiac surgery. However, in large randomised controlled trials of long-term statin-based therapy, excesses of renal failure were not observed—eg, acute-on-chronic renal failure in the SHARP trial among people who already had chronic kidney disease when randomised was recorded in 209 (6.7%) patients on simvastatin 20 mg plus ezetimibe 10 mg daily versus 231 (7.4%) patients on placebo (risk ratio 0.91, 95% CI 0.75–1.09); renal failure or impairment in the Heart Protection Study among people with pre-existing cardiovascular disease or diabetes was recorded in 65 (0.6%) patients on simvastatin 40 mg daily versus 60 (0.6%) patients on placebo (risk ratio 1.07, 95% CI 0.76–1.52); and renal failure in the JUPITER trial in the primary prevention setting was recorded in 71 (0.9%) patients on rosuvastatin 20 mg daily versus 70 (0.9%) patients on placebo (risk ratio 1.01, 95% CI 0.73–1.41).

Consequently, as with differences in the rates of other outcomes that have been associated with statin use in observational studies, the evidence from randomised controlled trials does not provide support for an adverse effect of statin therapy on the kidney (except perhaps in the perioperative setting) and, instead, indicates that it may slow the progression of renal impairment (although the clinical significance of the small effect that has been observed is uncertain). If, however, statin therapy is not stopped when statin-related myopathy occurs, this may lead to renal failure, so doctors and patients should be alert to the possibility of this rare complication (while also being careful not to attribute muscle symptoms to statin therapy without confirmatory evidence and so not stop the statin unnecessarily).

Evidence against adverse effects on other outcomes

In addition to the proven and refuted adverse effects described above, it has also been suggested that statin therapy might produce adverse effects on several other health outcomes (eg, liver disease, sleep disturbance, aggression, suicidal behaviour, erectile dysfunction, neuropathy). These claims have typically been based on case reports or observational studies of statin use and, in most cases, reliable evidence exists that refutes them. For example, although statin therapy can lead to increases in concentrations of liver enzymes, it is associated with very low rates of serious liver injury (about 1 case per 100 000 users) in post-marketing surveillance data and it is uncertain that this association is causal. Indeed, the National Lipid Association’s Liver Expert Panel concluded that routine liver function monitoring might motivate doctors to discontinue statin therapy inappropriately when liver enzyme elevations are detected and, by so doing, put patients at increased risk of cardiovascular events. Statin therapy has also been associated with increased rates of pancreatitis in observational studies, whereas a meta-analysis of the available evidence from randomised trials indicates that it may reduce the risk (although more evidence is required to confirm that finding).

Even when not all the adverse events that were recorded in randomised trials have been reported publicly, they are likely to have been reviewed in detail by regulatory authorities. Moreover, the data that are publicly available from large randomised trials are often sufficient to rule out excesses of the magnitude claimed from non-randomised and uncontrolled studies (as with the examples of myalgia and cataract discussed above and, similarly, with the refutation of case reports suggesting more than a three-fold risk of peripheral neuropathy with statin therapy). In many cases, the lack of availability of recorded data reflects restrictions that used to exist on the amount of information that could be included in a journal paper, with the emphasis being on reporting observed differences in outcome between the treatment groups (which tended to result in bias against reporting null findings). That limitation can now be avoided by linking web-tabulations of all recorded adverse events to the journal article, as was done recently for the THRIVE trial of niacin and HOPE-3 trial of rosvastatin 10 mg daily. Such tabulations have also been provided for the Heart Protection Study of simvastatin 40 mg daily versus placebo and for the SEARCH trial of simvastatin 20 mg versus 80 mg daily, and it is anticipated that they will become available for other statin trials.

Although meta-analyses based on all of the adverse events recorded in all of the major trials of statin therapy—as are now being conducted by the CTT Collaborative Group—may identify some small additional adverse or beneficial effects, it is not likely that large absolute effects on any outcome will emerge. Consequently, their findings are not likely to alter the balance of benefit and harm materially for any particular type of patient (even those at low risk of cardiovascular events).

Conclusions

There is an important need for greater recognition of the limitations of observational studies and case reports as a source of reliable information about the effects of a treatment on health outcomes (except in the special circumstances where both the effects are large and the outcome would not normally be expected to occur). By contrast, a better understanding is needed of the strengths of randomised controlled trials of adequate size with systematic assessment of adverse health outcomes and, particularly for symptomatic side-effects, masked assignment of treatment for the identification of any moderate beneficial and adverse effects on common outcomes that may exist.

Proven benefits of lowering LDL cholesterol with effective statin regimens

Large-scale evidence from randomised controlled trials demonstrates clearly that, after a somewhat smaller risk reduction in the first year of treatment, statin therapy
Review

... reduces the risk of major vascular events during each subsequent year by about one-quarter for each mmol/L reduction in LDL cholesterol. The failure to recognise that the reported risk reductions with statin therapy related specifically to 1 mmol/L LDL cholesterol reductions led some commentators to underestimate substantially the benefits of actually taking statin therapy. For, whereas lowering LDL cholesterol by 1 mmol/L would reduce risk by about one-quarter during each year after the first, the effective statin regimens now available that can reduce LDL cholesterol by 2 mmol/L in many patients would approximately halve their risk of heart attacks and strokes.

Statins have been shown to produce similar proportional reductions per mmol/L LDL cholesterol reduction in the risks of major vascular events in many different types of patient (eg, lower and higher risk, women and men, older and younger), irrespective of their presenting cholesterol concentrations. Consequently, the absolute benefits of lowering LDL cholesterol by a given amount depend on the absolute risk of the individuals being treated rather than their presenting cholesterol concentrations (or other characteristics). For that reason, treatment guidelines now focus on an individual’s risk of vascular events rather than on their LDL cholesterol concentrations alone. Lowering LDL cholesterol by 2 mmol/L with an effective low-cost statin regimen (eg, atorvastatin 40 mg daily, which costs less than £2 per month) for 5 years in 10 000 patients would typically prevent major vascular events from occurring in about 1000 high-risk patients (ie, 10% absolute benefit) with pre-existing occlusive vascular disease (secondary prevention) and in 500 patients (ie, 5% absolute benefit) who are at increased risk but have not yet had a vascular event (primary prevention). Moreover, since statin therapy reduces vascular event risk further during each year it is taken, more prolonged therapy would produce even larger absolute benefits.

The proportional reduction in LDL cholesterol produced by a given statin regimen is similar irrespective of the starting cholesterol concentration. As a consequence, and perhaps somewhat counter-intuitively, more potent statin regimens are required to produce the same absolute reduction in LDL cholesterol and, thus, the same proportional risk reduction among individuals presenting with lower rather than higher LDL cholesterol concentrations. This finding is reflected in the recent American College of Cardiology/American Heart Association guidelines, with the high-intensity statin regimens considered to be warranted for patients at elevated risk of vascular events even if they present with average or below average LDL cholesterol concentrations (ie, a change in emphasis towards treating high risk levels and away from treating only high cholesterol concentrations). Adoption of this strategy should help avoid undertreatment of higher-risk patients who have LDL cholesterol concentrations close to the values that were recommended in previous guidelines as targets for dose titration of statin therapy.

Proven harms of statin therapy, but minimal symptomatic side-effects

The only adverse events shown definitely to be caused by statin therapy—ie, are adverse effects of statins—are myopathy (specifically defined as muscle pain or weakness combined with large increases in blood concentrations of creatine kinase) and diabetes, although it is likely that the risk of haemorrhagic stroke is also increased. Typically, treatment of 10 000 patients for 5 years with an effective statin regimen (eg, atorvastatin 40 mg daily) would be expected to cause about 5 extra cases of myopathy (one of which might progress to rhabdomyolysis), 50–100 cases of diabetes, and 5–10 haemorrhagic strokes. Statin therapy may also cause symptomatic adverse events (eg, muscle pain or weakness) in up to 50–100 patients per 10 000 treated for 5 years. The absolute excesses of adverse events with statin therapy are increased in certain circumstances (eg, with higher statin doses and in combination with certain drugs, or in particular types of patient or population), but they are still small by comparison with the beneficial effects. Moreover, any adverse impact on major vascular events that is caused by the excesses of diabetes and haemorrhagic stroke has already been taken into account in the estimates of the overall benefits.

Even so, because statins are taken by so many people, substantial numbers of people will still experience adverse effects of statin therapy. For example, about 100 cases of myopathy would be caused each year among each million people who are prescribed statin therapy. However, whereas these adverse events are readily attributed to the statin (along with many other events that are not causally related), it is not possible to identify those individuals in whom statin therapy has prevented a heart attack or stroke, even though these absolute benefits are much larger. For example, among each million patients taking statins for secondary prevention, about 20 000 people would avoid major vascular events each year that statin therapy continues.

In addition, whereas many of the adverse effects (such as myopathy) can be reversed with no residual effects by stopping the statin therapy, the effects of a heart attack or stroke are often irreversible.

As discussed above, it has been claimed—based chiefly on case series (eg, reports to regulatory authorities of adverse events attributed to a statin) and non-randomised observational studies (eg, analyses of health-care databases)—that statin therapy causes increased rates of many other types of adverse event, including symptomatic side-effects (in particular, muscle pain and weakness) that prevent a large proportion of patients...
from continuing statin therapy long term. This idea that so-called statin intolerance is a common problem is being widely promulgated, not just in the medical literature but also in the public media. In addition, the focus of new LDL cholesterol-lowering agents in development (such as PCSK9 inhibitors) is shifting towards their use in patients classified as “statin intolerant” in whom the reductions in LDL cholesterol would, in the absence of any background statin therapy, be larger (and, hence, their value might be perceived to be greater).

Whereas statins are now generic and low cost, the newer agents are costly and there may be commercial pressures to create a market (eg, with the drafting of some of the reports about statin intolerance being funded by manufacturers of the new agents). Of most relevance, however, are claims that statin intolerance occurs in up to one-fifth of treated patients, which are not supported by the large-scale evidence from randomised trials: in particular, statin therapy has generally been found to be no less well tolerated than placebo. For example, there was no excess of discontinuations related to adverse events with statin therapy, and any excesses of muscle-related symptoms due to statin therapy occurred in only about 0–1–0.2% of patients during each year of treatment.

Public health consequences of misleading claims about the safety of statins

There is a serious cost to public health of making misleading claims about the safety and efficacy of statin therapy. Following publication of reports of exaggerated side-effect rates and related media coverage, researchers at the Picker Institute (Oxford, UK) conducted in-depth interviews and focus groups with patients, general practitioners, and cardiologists, along with online surveys, in 2015. They found that the adverse media coverage was linked to increased reticence among the doctors to discuss and prescribe statins, and reduced compliance by the patients (including those with pre-existing cardiovascular disease) due to raised awareness of perceived side-effects.

Cholesterol-lowering therapy is substantially underused by people at high risk of heart attacks and strokes. For example, in the PURE study across 22 countries in 2016, 66% of individuals aged 35–70 years with cardiovascular disease were using statin therapy in high-income countries (eg, Sweden or Canada), but only 27% in upper-middle-income countries (eg, Poland, Turkey, or Brazil) and about 5% in lower-income countries (eg, China or India). Across mainland Europe, in the SHARE study, only 42% of individuals aged at least 50 years with prior cardiovascular disease were taking any form of cholesterol-lowering therapy in 2013, with large variations between different countries (eg, 55–56% in Belgium, Denmark, or the Netherlands vs 27–29% in Estonia or Slovenia). There was also evidence of substantial levels of drug discontinuation, particularly among people who had not had recent cardiovascular events. In a cross-sectional study based on the Australian National Health Measures Survey in 2011–12, cholesterol-lowering therapy was being taken by 56% of people aged 45–74 years who had pre-existing cardiovascular disease and by 33% of those considered to have a high 5-year risk (>15%) of a primary cardiovascular event. Similarly, in the US Medical Expenditure Survey, statin therapy was being used in 2010 by 58% of people aged 30–79 years with coronary artery disease and by 52% of those aged older than 40 years with diabetes. In the UK, analyses of the Clinical Practice Research Datalink in 2014–15 indicated that statin therapy had been started by only about 60% of patients who had recently had a first cardiovascular event and by only about 25% of patients in whom a 10-year cardiovascular risk of 20% or more had been recorded by their general practitioner within the past month.

A study in Denmark found that negative statin-related news stories were repeatedly followed by average proportional increases of about 10% in the likelihood of stopping statin therapy. An Australian television programme that was withdrawn after being broadcast because it misrepresented the evidence about statins was followed during the subsequent year by a reduction in the numbers of prescriptions of statin therapy for patients at elevated risk of heart attacks and strokes. The researchers estimated that about 60 000 fewer Australians had statins dispensed than predicted from previous rates and that, if those patients continue to avoid statin therapy during the next 5 years, between 1500 and 3000 potentially fatal heart attacks and strokes will occur that would otherwise have been avoided. Similarly, following publication of claims that statins cause side-effects in about one-fifth of patients, analyses of prescription data from the UK Clinical Practice Research Datalink indicate that there was a proportional increase of about 10% in patients stopping statin therapy for secondary and primary prevention (as well as reductions in the numbers of patients who had their cardiovascular risk assessed to determine their eligibility for statin therapy). The researchers estimated that more than 200 000 UK patients had stopped taking their statin therapy and that (depending on what proportion resume treatment) this will result in between about 2000 and 6000 cardiovascular events occurring during the subsequent decade that would otherwise have been avoided.

In such circumstances, much greater caution is warranted than has sometimes been the case when making claims about possible side-effects, since otherwise patients at high risk of heart attacks, strokes, and related deaths, and their doctors, may well be inappropriately dissuaded from using statin therapy despite the proven benefits.
Review

Contributors
RC had the idea for this paper and wrote the initial drafts. Substantial revisions were made in response to detailed comments from the other authors through a series of iterations. The table in the appendix was produced by CR and the figures were produced by JE and LB (except for figure 2). All of the authors agreed the final version.

Declaration of interests
JA, CB, LB, RC, JE, RP, DP, and CR work in the Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU) at the University of Oxford. The CTSU has received research grants from Abbott, AstraZeneca, Bayer, GlaxoSmithKline, Merck, Novartis, Pfizer, Roche, Schering, and Solvay that are governed by University of Oxford contracts that protect its independence, and it has a staff policy of not taking personal payments from industry (with reimbursement sought only for the costs of travel and accommodation to attend scientific meetings). RC is co-inventor of a genetic test for statin-related myopathy risk, but receives no income from it. DP has participated in advisory meetings for Sanofi related to PCSK9 inhibitor therapy in his previous employment. The CTT Collaboration, which is coordinated by CTSU with colleagues from the University of Sydney, does not receive industry funding. JD has received research grants from, and served as a consultant to, Merck and Pfizer. GDS has twice received travel and accommodation funding and honoraria from Merck; DD receives compensation for serving on data monitoring committees for clinical trials (including of statins) funded by Abbvie, Actelion, Amgen, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Merck, Sanofi, and Teva. NW and ML are inventors of a combination formulation for the prevention of cardiovascular disease that includes a statin, covered by patents licensed to Polypill in which they both hold shares and which owns the website polypill.com. SMcA has received research grants for research on statins and polypill development from Bristol-Myers Squibb and BUPA. SMcA is co-inventor on a pending patent for a LDL cholesterol estimation method, and has served as an advisor to Sanofi, Regeneron, Quest Diagnostics, Pressed Juicy, and Abbott Nutrition. NP has received research grants and honoraria for participating in advisory meetings and giving lectures from Amgen, Lilly, Menorini, and Merck. PR has received investigator-initiated research grants from Amgen, AstraZeneca, Kowa, Novartis, and Pfizer. PSe has received research grants and honoraria for consultancies from Amgen and Pfizer. LS has undertaken advisory work unrelated to statins for AstraZeneca and GlaxoSmithKline. SY has received a research grant from AstraZeneca through Hamilton Health Sciences. AR declares that the George Health Enterprises, the social enterprise arm of The George Institute, has received investment to develop combination products containing statin, aspirin, and blood-pressure-lowering drugs. JS has received grants from the National Health and Medical Research Council, Australia; Bayer Pharmaceuticals; Roche; and Merck Serono. RB, SE, BN, IR, and PSe declare no competing interests.

Acknowledgments
We thank Emily Banks, Robert Califf, Barbara Caradei, Janet Darbyshire, Paul Glasziou, Mark Hoffman, Ross Prentice, Michael Rawlins, Robert Temple, and Jan Vandenbroucke for comments on earlier drafts of this paper; Sarah Lewington for providing figure 2 based on the Prospective Studies Collaboration database; and Kelly Davies, Heather Halls, William Harrington, Lisa Holland, Borislava Mihaylova, and Kate Wilson from the Secretariat of the Cholesterol Treatment Trials Collaboration.

References
1 The Academy of Medical Sciences. Identifying the environmental causes of disease: how should we decide what to believe and when to take action? London: The Academy of Medical Sciences, 2007.
10 Malliotra A. Saturated fat is not the major issue. BMJ 2013; 347: f6123.
26 Goldacre B. Statins have no side effects? This is what our study really found... http://www.theguardian.com/society/blog/2014/mar/14/statins-side-effects-study-placebo-ben-goldacre (accessed Oct 17, 2015).

Rothwell PM. External validity of randomised controlled trials: “to whom do the results of this trial apply?” Lancet 2002; 359: 825–83.

249 Hsia J, MacFadyen JG, Monyak J, Ridker PM. Cardiovascular event reduction and adverse events among subjects attaining low-density lipoprotein cholesterol <50 mg/dl with rosuvastatin. *The JUPITER trial (justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin).* *J Am Coll Cardiol* 2011; 57: 1666–75.

257 Godlee F. Adverse effects of statins. *BMJ* 2014; 348: g3006.

Am J Cardiol 2004; 93: 1825–33.

Lester D. Serum cholesterol levels and suicide: a meta-analysis. Suicide Life Threat Behav 2002; 32: 331–46.
